Conformal Symplectic and Relativistic Optimization
Guilherme Franca, Jeremias Sulam, Daniel Robinson, Rene Vidal
Spotlight presentation: Orals & Spotlights Track 30: Optimization/Theory
on 2020-12-10T07:20:00-08:00 - 2020-12-10T07:30:00-08:00
on 2020-12-10T07:20:00-08:00 - 2020-12-10T07:30:00-08:00
Poster Session 6 (more posters)
on 2020-12-10T09:00:00-08:00 - 2020-12-10T11:00:00-08:00
GatherTown: Optimization ( Town A4 - Spot B1 )
on 2020-12-10T09:00:00-08:00 - 2020-12-10T11:00:00-08:00
GatherTown: Optimization ( Town A4 - Spot B1 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: Arguably, the two most popular accelerated or momentum-based optimization methods are Nesterov's accelerated gradient and Polyaks's heavy ball, both corresponding to different discretizations of a particular second order differential equation with a friction term. Such connections with continuous-time dynamical systems have been instrumental in demystifying acceleration phenomena in optimization. Here we study structure-preserving discretizations for a certain class of dissipative (conformal) Hamiltonian systems, allowing us to analyze the symplectic structure of both Nesterov and heavy ball, besides providing several new insights into these methods. Moreover, we propose a new algorithm based on a dissipative relativistic system that normalizes the momentum and may result in more stable/faster optimization. Importantly, such a method generalizes both Nesterov and heavy ball, each being recovered as distinct limiting cases, and has potential advantages at no additional cost.