Hitting the High Notes: Subset Selection for Maximizing Expected Order Statistics
Aranyak Mehta, Uri Nadav, Alexandros Psomas, Aviad Rubinstein
Spotlight presentation: Orals & Spotlights Track 11: Learning Theory
on 2020-12-08T07:10:00-08:00 - 2020-12-08T07:20:00-08:00
on 2020-12-08T07:10:00-08:00 - 2020-12-08T07:20:00-08:00
Poster Session 2 (more posters)
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Learning theory ( Town C2 - Spot D1 )
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Learning theory ( Town C2 - Spot D1 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: We consider the fundamental problem of selecting $k$ out of $n$ random variables in a way that the expected highest or second-highest value is maximized. This question captures several applications where we have uncertainty about the quality of candidates (e.g. auction bids, search results) and have the capacity to explore only a small subset due to an exogenous constraint. For example, consider a second price auction where system constraints (e.g., costly retrieval or model computation) allow the participation of only $k$ out of $n$ bidders, and the goal is to optimize the expected efficiency (highest bid) or expected revenue (second highest bid). We study the case where we are given an explicit description of each random variable. We give a PTAS for the problem of maximizing the expected highest value. For the second-highest value, we prove a hardness result: assuming the Planted Clique Hypothesis, there is no constant factor approximation algorithm that runs in polynomial time. Surprisingly, under the assumption that each random variable has monotone hazard rate (MHR), a simple score-based algorithm, namely picking the $k$ random variables with the largest $1/\sqrt{k}$ top quantile value, is a constant approximation to the expected highest and second highest value, \emph{simultaneously}.