Assisted Learning: A Framework for Multi-Organization Learning
Xun Xian, Xinran(Carrie) Wang, Jie Ding, Reza Ghanadan
Spotlight presentation: Orals & Spotlights Track 10: Social/Privacy
on 2020-12-08T08:00:00-08:00 - 2020-12-08T08:10:00-08:00
on 2020-12-08T08:00:00-08:00 - 2020-12-08T08:10:00-08:00
Poster Session 2 (more posters)
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Algorithms and learning theory ( Town B2 - Spot A2 )
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Algorithms and learning theory ( Town B2 - Spot A2 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: In an increasing number of AI scenarios, collaborations among different organizations or agents (e.g., human and robots, mobile units) are often essential to accomplish an organization-specific mission. However, to avoid leaking useful and possibly proprietary information, organizations typically enforce stringent security constraints on sharing modeling algorithms and data, which significantly limits collaborations. In this work, we introduce the Assisted Learning framework for organizations to assist each other in supervised learning tasks without revealing any organization's algorithm, data, or even task. An organization seeks assistance by broadcasting task-specific but nonsensitive statistics and incorporating others' feedback in one or more iterations to eventually improve its predictive performance. Theoretical and experimental studies, including real-world medical benchmarks, show that Assisted Learning can often achieve near-oracle learning performance as if data and training processes were centralized.