Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger, James Morrill, James Foster, Terry Lyons
Spotlight presentation: Orals & Spotlights Track 28: Deep Learning
on 2020-12-10T08:20:00-08:00 - 2020-12-10T08:30:00-08:00
on 2020-12-10T08:20:00-08:00 - 2020-12-10T08:30:00-08:00
Poster Session 6 (more posters)
on 2020-12-10T09:00:00-08:00 - 2020-12-10T11:00:00-08:00
GatherTown: Deep Learning ( Town E0 - Spot B3 )
on 2020-12-10T09:00:00-08:00 - 2020-12-10T11:00:00-08:00
GatherTown: Deep Learning ( Town E0 - Spot B3 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: Neural ordinary differential equations are an attractive option for modelling temporal dynamics. However, a fundamental issue is that the solution to an ordinary differential equation is determined by its initial condition, and there is no mechanism for adjusting the trajectory based on subsequent observations. Here, we demonstrate how this may be resolved through the well-understood mathematics of \emph{controlled differential equations}. The resulting \emph{neural controlled differential equation} model is directly applicable to the general setting of partially-observed irregularly-sampled multivariate time series, and (unlike previous work on this problem) it may utilise memory-efficient adjoint-based backpropagation even across observations. We demonstrate that our model achieves state-of-the-art performance against similar (ODE or RNN based) models in empirical studies on a range of datasets. Finally we provide theoretical results demonstrating universal approximation, and that our model subsumes alternative ODE models.