Skip to yearly menu bar Skip to main content


Poster

Deeply Learned Spectral Total Variation Decomposition

Tamara G. Grossmann · Yury Korolev · Guy Gilboa · Carola-Bibiane Schönlieb

Poster Session 1 #318

Abstract:

Non-linear spectral decompositions of images based on one-homogeneous functionals such as total variation have gained considerable attention in the last few years. Due to their ability to extract spectral components corresponding to objects of different size and contrast, such decompositions enable filtering, feature transfer, image fusion and other applications. However, obtaining this decomposition involves solving multiple non-smooth optimisation problems and is therefore computationally highly intensive. In this paper, we present a neural network approximation of a non-linear spectral decomposition. We report up to four orders of magnitude (×10,000) speedup in processing of mega-pixel size images, compared to classical GPU implementations. Our proposed network, TVspecNET, is able to implicitly learn the underlying PDE and, despite being entirely data driven, inherits invariances of the model based transform. To the best of our knowledge, this is the first approach towards learning a non-linear spectral decomposition of images. Not only do we gain a staggering computational advantage, but this approach can also be seen as a step towards studying neural networks that can decompose an image into spectral components defined by a user rather than a handcrafted functional.

Chat is not available.