Skip to yearly menu bar Skip to main content


Poster

The Statistical Cost of Robust Kernel Hyperparameter Turning

Raphael Meyer · Christopher Musco

Poster Session 3 #997

Abstract:

This paper studies the statistical complexity of kernel hyperparameter tuning in the setting of active regression under adversarial noise. We consider the problem of finding the best interpolant from a class of kernels with unknown hyperparameters, assuming only that the noise is square-integrable. We provide finite-sample guarantees for the problem, characterizing how increasing the complexity of the kernel class increases the complexity of learning kernel hyperparameters. For common kernel classes (e.g. squared-exponential kernels with unknown lengthscale), our results show that hyperparameter optimization increases sample complexity by just a logarithmic factor, in comparison to the setting where optimal parameters are known in advance. Our result is based on a subsampling guarantee for linear regression under multiple design matrices which may be of independent interest.

Chat is not available.