Skip to yearly menu bar Skip to main content


Poster

Security Analysis of Safe and Seldonian Reinforcement Learning Algorithms

Pinar Ozisik · Philip Thomas

Poster Session 1 #567

Abstract:

We analyze the extent to which existing methods rely on accurate training data for a specific class of reinforcement learning (RL) algorithms, known as Safe and Seldonian RL. We introduce a new measure of security to quantify the susceptibility to perturbations in training data by creating an attacker model that represents a worst-case analysis, and show that a couple of Seldonian RL methods are extremely sensitive to even a few data corruptions. We then introduce a new algorithm that is more robust against data corruptions, and demonstrate its usage in practice on some RL problems, including a grid-world and a diabetes treatment simulation.

Chat is not available.