Skip to yearly menu bar Skip to main content


Talk by Taco Cohen
in
Workshop: Differential Geometry meets Deep Learning (DiffGeo4DL)

Invited Talk 2: Gauge Theory in Geometric Deep Learning

Taco Cohen


Abstract:

It is often said that differential geometry is in essence the study of connections on a principal bundle. These notions have been discovered independently in gauge theory in physics, and over the last few years it has become clear that they also provide a very general and systematic way to model convolutional neural networks on homogeneous spaces and general manifolds. Specifically, representation spaces in these networks are described as fields of geometric quantities on a manifold (i.e. sections of associated vector bundles). These quantities can only be expressed numerically after making an arbitrary choice of frame / gauge (section of a principal bundle). Network layers map between representation spaces, and should be equivariant to symmetry transformations. In this talk I will discuss two results that have a bearing on geometric deep learning research. First, we discuss the “convolution is all you need theorem” which states that any linear equivariant map between homogeneous representation spaces is a generalized convolution. Secondly, in the case of gauge symmetry (when all frames should be considered equivalent), we show that defining a non-trivial equivariant linear map between representation spaces requires the introduction of a principal connection which defines parallel transport. We will not assume familiarity with bundles or gauge theory, and use examples relevant to neural networks to illustrate the ideas.

Chat is not available.