Skip to yearly menu bar Skip to main content


Poster

Invariance and identifiability issues for word embeddings

Rachel Carrington · Karthik Bharath · Simon Preston

East Exhibition Hall B, C #135

Keywords: [ Applications ] [ Natural Language Processing ]


Abstract:

Word embeddings are commonly obtained as optimisers of a criterion function f of a text corpus, but assessed on word-task performance using a different evaluation function g of the test data. We contend that a possible source of disparity in performance on tasks is the incompatibility between classes of transformations that leave f and g invariant. In particular, word embeddings defined by f are not unique; they are defined only up to a class of transformations to which f is invariant, and this class is larger than the class to which g is invariant. One implication of this is that the apparent superiority of one word embedding over another, as measured by word task performance, may largely be a consequence of the arbitrary elements selected from the respective solution sets. We provide a formal treatment of the above identifiability issue, present some numerical examples, and discuss possible resolutions.

Live content is unavailable. Log in and register to view live content