Poster
Latent Ordinary Differential Equations for Irregularly-Sampled Time Series
Yulia Rubanova · Tian Qi Chen · David Duvenaud
East Exhibition Hall B, C #81
Keywords: [ Generative Models ] [ Deep Learning ] [ Applications ] [ Time Series Analysis ]
Time series with non-uniform intervals occur in many applications, and are difficult to model using standard recurrent neural networks (RNNs). We generalize RNNs to have continuous-time hidden dynamics defined by ordinary differential equations (ODEs), a model we call ODE-RNNs. Furthermore, we use ODE-RNNs to replace the recognition network of the recently-proposed Latent ODE model. Both ODE-RNNs and Latent ODEs can naturally handle arbitrary time gaps between observations, and can explicitly model the probability of observation times using Poisson processes. We show experimentally that these ODE-based models outperform their RNN-based counterparts on irregularly-sampled data.
Live content is unavailable. Log in and register to view live content