Skip to yearly menu bar Skip to main content


Poster

Importance Resampling for Off-policy Prediction

Matthew Schlegel · Wesley Chung · Daniel Graves · Jian Qian · Martha White

East Exhibition Hall B, C #206

Keywords: [ Reinforcement Learning ] [ Reinforcement Learning and Planning ]


Abstract:

Importance sampling (IS) is a common reweighting strategy for off-policy prediction in reinforcement learning. While it is consistent and unbiased, it can result in high variance updates to the weights for the value function. In this work, we explore a resampling strategy as an alternative to reweighting. We propose Importance Resampling (IR) for off-policy prediction, which resamples experience from a replay buffer and applies standard on-policy updates. The approach avoids using importance sampling ratios in the update, instead correcting the distribution before the update. We characterize the bias and consistency of IR, particularly compared to Weighted IS (WIS). We demonstrate in several microworlds that IR has improved sample efficiency and lower variance updates, as compared to IS and several variance-reduced IS strategies, including variants of WIS and V-trace which clips IS ratios. We also provide a demonstration showing IR improves over IS for learning a value function from images in a racing car simulator.

Live content is unavailable. Log in and register to view live content