Poster
Neural Diffusion Distance for Image Segmentation
Jian Sun · Zongben Xu
East Exhibition Hall B, C #89
Keywords: [ Applications ] [ Computer Vision ] [ Algorithms -> Image Segmentation; Algorithms -> Similarity and Distance Learning; Algorithms ] [ Spectral Methods; Applications ]
Diffusion distance is a spectral method for measuring distance among nodes on graph considering global data structure. In this work, we propose a spec-diff-net for computing diffusion distance on graph based on approximate spectral decomposition. The network is a differentiable deep architecture consisting of feature extraction and diffusion distance modules for computing diffusion distance on image by end-to-end training. We design low resolution kernel matching loss and high resolution segment matching loss to enforce the network's output to be consistent with human-labeled image segments. To compute high-resolution diffusion distance or segmentation mask, we design an up-sampling strategy by feature-attentional interpolation which can be learned when training spec-diff-net. With the learned diffusion distance, we propose a hierarchical image segmentation method outperforming previous segmentation methods. Moreover, a weakly supervised semantic segmentation network is designed using diffusion distance and achieved promising results on PASCAL VOC 2012 segmentation dataset.
Live content is unavailable. Log in and register to view live content