Skip to yearly menu bar Skip to main content


Poster

Image Synthesis with a Single (Robust) Classifier

Shibani Santurkar · Andrew Ilyas · Dimitris Tsipras · Logan Engstrom · Brandon Tran · Aleksander Madry

East Exhibition Hall B, C #81

Keywords: [ Applications ] [ Computer Vision ]


Abstract:

We show that the basic classification framework alone can be used to tackle some of the most challenging tasks in image synthesis. In contrast to other state-of-the-art approaches, the toolkit we develop is rather minimal: it uses a single, off-the-shelf classifier for all these tasks. The crux of our approach is that we train this classifier to be adversarially robust. It turns out that adversarial robustness is precisely what we need to directly manipulate salient features of the input. Overall, our findings demonstrate the utility of robustness in the broader machine learning context.

Live content is unavailable. Log in and register to view live content