Skip to yearly menu bar Skip to main content


Poster

Envy-Free Classification

Maria-Florina Balcan · Travis Dick · Ritesh Noothigattu · Ariel Procaccia

East Exhibition Hall B, C #77

Keywords: [ Theory ] [ Game Theory and Computational Economics ] [ Fairness, Accountability, and Transparency ] [ Applications ]


Abstract:

In classic fair division problems such as cake cutting and rent division, envy-freeness requires that each individual (weakly) prefer his allocation to anyone else's. On a conceptual level, we argue that envy-freeness also provides a compelling notion of fairness for classification tasks, especially when individuals have heterogeneous preferences. Our technical focus is the generalizability of envy-free classification, i.e., understanding whether a classifier that is envy free on a sample would be almost envy free with respect to the underlying distribution with high probability. Our main result establishes that a small sample is sufficient to achieve such guarantees, when the classifier in question is a mixture of deterministic classifiers that belong to a family of low Natarajan dimension.

Live content is unavailable. Log in and register to view live content