Skip to yearly menu bar Skip to main content


Poster

Joint-task Self-supervised Learning for Temporal Correspondence

Xueting Li · Sifei Liu · Shalini De Mello · Xiaolong Wang · Jan Kautz · Ming-Hsuan Yang

East Exhibition Hall B, C #65

Keywords: [ Applications ] [ Computer Vision ] [ Algorithms ] [ Unsupervised Learning ]


Abstract:

This paper proposes to learn reliable dense correspondence from videos in a self-supervised manner. Our learning process integrates two highly related tasks: tracking large image regions and establishing fine-grained pixel-level associations between consecutive video frames. We exploit the synergy between both tasks through a shared inter-frame affinity matrix, which simultaneously models transitions between video frames at both the region- and pixel-levels. While region-level localization helps reduce ambiguities in fine-grained matching by narrowing down search regions; fine-grained matching provides bottom-up features to facilitate region-level localization. Our method outperforms the state-of-the-art self-supervised methods on a variety of visual correspondence tasks, including video-object and part-segmentation propagation, keypoint tracking, and object tracking. Our self-supervised method even surpasses the fully-supervised affinity feature representation obtained from a ResNet-18 pre-trained on the ImageNet.

Live content is unavailable. Log in and register to view live content