Skip to yearly menu bar Skip to main content


Poster

Wavelet regression and additive models for irregularly spaced data

Asad Haris · Ali Shojaie · Noah Simon

Room 210 #45

Keywords: [ Sparsity and Compressed Sensing ] [ Algorithms ]


Abstract:

We present a novel approach for nonparametric regression using wavelet basis functions. Our proposal, waveMesh, can be applied to non-equispaced data with sample size not necessarily a power of 2. We develop an efficient proximal gradient descent algorithm for computing the estimator and establish adaptive minimax convergence rates. The main appeal of our approach is that it naturally extends to additive and sparse additive models for a potentially large number of covariates. We prove minimax optimal convergence rates under a weak compatibility condition for sparse additive models. The compatibility condition holds when we have a small number of covariates. Additionally, we establish convergence rates for when the condition is not met. We complement our theoretical results with empirical studies comparing waveMesh to existing methods.

Live content is unavailable. Log in and register to view live content