Skip to yearly menu bar Skip to main content


Poster

Stochastic Primal-Dual Method for Empirical Risk Minimization with O(1) Per-Iteration Complexity

Conghui Tan · Tong Zhang · Shiqian Ma · Ji Liu

Room 210 #13

Keywords: [ Convex Optimization ]


Abstract:

Regularized empirical risk minimization problem with linear predictor appears frequently in machine learning. In this paper, we propose a new stochastic primal-dual method to solve this class of problems. Different from existing methods, our proposed methods only require O(1) operations in each iteration. We also develop a variance-reduction variant of the algorithm that converges linearly. Numerical experiments suggest that our methods are faster than existing ones such as proximal SGD, SVRG and SAGA on high-dimensional problems.

Live content is unavailable. Log in and register to view live content