Poster
Densely Connected Attention Propagation for Reading Comprehension
Yi Tay · Anh Tuan Luu · Siu Cheung Hui · Jian Su
Room 210 #84
Keywords: [ Attention Models ] [ Natural Language Processing ] [ Information Retrieval ]
We propose DecaProp (Densely Connected Attention Propagation), a new densely connected neural architecture for reading comprehension (RC). There are two distinct characteristics of our model. Firstly, our model densely connects all pairwise layers of the network, modeling relationships between passage and query across all hierarchical levels. Secondly, the dense connectors in our network are learned via attention instead of standard residual skip-connectors. To this end, we propose novel Bidirectional Attention Connectors (BAC) for efficiently forging connections throughout the network. We conduct extensive experiments on four challenging RC benchmarks. Our proposed approach achieves state-of-the-art results on all four, outperforming existing baselines by up to 2.6% to 14.2% in absolute F1 score.
Live content is unavailable. Log in and register to view live content