Skip to yearly menu bar Skip to main content


Poster

Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls

Zeyuan Allen-Zhu · Elad Hazan · Wei Hu · Yuanzhi Li

Pacific Ballroom #167

Keywords: [ Convex Optimization ]


Abstract:

We propose a rank-k variant of the classical Frank-Wolfe algorithm to solve convex optimization over a trace-norm ball. Our algorithm replaces the top singular-vector computation (1-SVD) in Frank-Wolfe with a top-k singular-vector computation (k-SVD), which can be done by repeatedly applying 1-SVD k times. Alternatively, our algorithm can be viewed as a rank-k restricted version of projected gradient descent. We show that our algorithm has a linear convergence rate when the objective function is smooth and strongly convex, and the optimal solution has rank at most k. This improves the convergence rate and the total time complexity of the Frank-Wolfe method and its variants.

Live content is unavailable. Log in and register to view live content