Poster
Probabilistic Differential Dynamic Programming
Yunpeng Pan · Evangelos Theodorou
Level 2, room 210D
We present a data-driven, probabilistic trajectory optimization framework for systems with unknown dynamics, called Probabilistic Differential Dynamic Programming (PDDP). PDDP takes into account uncertainty explicitly for dynamics models using Gaussian processes (GPs). Based on the second-order local approximation of the value function, PDDP performs Dynamic Programming around a nominal trajectory in Gaussian belief spaces. Different from typical gradient-based policy search methods, PDDP does not require a policy parameterization and learns a locally optimal, time-varying control policy. We demonstrate the effectiveness and efficiency of the proposed algorithm using two nontrivial tasks. Compared with the classical DDP and a state-of-the-art GP-based policy search method, PDDP offers a superior combination of data-efficiency, learning speed, and applicability.
Live content is unavailable. Log in and register to view live content