Poster
Error-Minimizing Estimates and Universal Entry-Wise Error Bounds for Low-Rank Matrix Completion
Franz J Kiraly · Louis Theran
Harrah's Special Events Center, 2nd Floor
[
Abstract
]
Abstract:
We propose a general framework for reconstructing and denoising single entries of incomplete and noisy entries. We describe: effective algorithms for deciding if and entry can be reconstructed and, if so, for reconstructing and denoising it; and a priori bounds on the error of each entry, individually. In the noiseless case our algorithm is exact. For rank-one matrices, the new algorithm is fast, admits a highly-parallel implementation, and produces an error minimizing estimate that is qualitatively close to our theoretical and the state-of-the-art Nuclear Norm and OptSpace methods.
Live content is unavailable. Log in and register to view live content