Skip to yearly menu bar Skip to main content


Poster

Sparse Prediction with the $k$-Support Norm

Andreas Argyriou · Rina Foygel · Nati Srebro

Harrah’s Special Events Center 2nd Floor

Abstract: We derive a novel norm that corresponds to the tightest convex relaxation of sparsity combined with an $\ell_2$ penalty. We show that this new norm provides a tighter relaxation than the elastic net, and is thus a good replacement for the Lasso or the elastic net in sparse prediction problems. But through studying our new norm, we also bound the looseness of the elastic net, thus shedding new light on it and providing justification for its use.

Live content is unavailable. Log in and register to view live content