Skip to yearly menu bar Skip to main content


Poster

Block Variable Selection in Multivariate Regression and High-dimensional Causal Inference

Aurelie Lozano · Vikas Sindhwani


Abstract:

We consider multivariate regression problems involving high-dimensional predictor and response spaces. To efficiently address such problems, we propose a variable selection method, Multivariate Group Orthogonal Matching Pursuit, which extends the standard Orthogonal Matching Pursuit technique to account for arbitrary sparsity patterns induced by domain-specific groupings over both input and output variables, while also taking advantage of the correlation that may exist between the multiple outputs. We illustrate the utility of this framework for inferring causal relationships over a collection of high-dimensional time series variables. When applied to time-evolving social media content, our models yield a new family of causality-based influence measures that may be seen as an alternative to PageRank. Theoretical guarantees, extensive simulations and empirical studies confirm the generality and value of our framework.

Live content is unavailable. Log in and register to view live content