Poster
Random Projections for $k$-means Clustering
Christos Boutsidis · Anastasios Zouzias · Petros Drineas
[
Abstract
]
Abstract:
This paper discusses the topic of dimensionality reduction for
$k$-means clustering. We prove that any set of $n$ points in $d$
dimensions (rows in a matrix $A \in \RR^{n \times d}$) can be projected into $t =
\Omega(k / \eps^2)$ dimensions, for any $\eps \in (0,1/3)$, in
$O(n d \lceil \eps^{-2} k/ \log(d) \rceil )$ time, such that with
constant probability the optimal $k$-partition of the point
set is preserved within a factor of $2+\eps$. The projection is
done by post-multiplying $A$ with a $d \times t$ random
matrix $R$ having entries $+1/\sqrt{t}$ or $-1/\sqrt{t}$ with equal probability.
A numerical implementation of our technique and experiments on a large face images dataset verify the speed and the accuracy of our theoretical results.
Live content is unavailable. Log in and register to view live content