

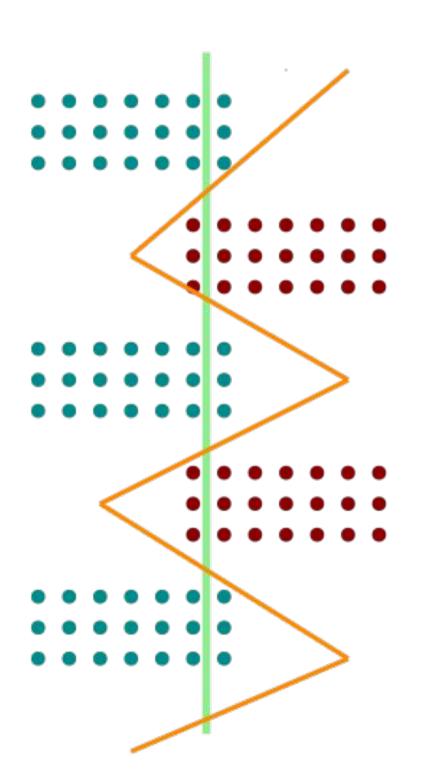
Impact of Label Noise on Learning Complex Features Rahul Vashisht*, PKrishna Kumar*, Harsha Vardhan Govind¹, Harish G. Ramaswamy Indian Institute of Technology Madras, ¹IIITDM Kancheepuram

Introduction

Neural networks trained with stochastic gradient descent exhibit an inductive bias towards simpler decision boundaries, typically converging to a narrow family of functions

- We investigate the impact of pre-training models with noisy labels on the dynamics of SGD across various architectures and dataset.
- We show that pre-training with noisy labels encourages gradient descent to find alternate minima that do not solely depend upon simple feature.
- Model begins to leverage a broader range of features and improved out-of-distribution generalization

Ill-effects of Extreme Simplicity Bias



- Susceptible to perturbation attack: Neural networks that learn simple functions lack robustness
- Suboptimal generalization: performance because more powerful discriminative features are ignored
- Out-of-distribution performance: poor due to excessively simple decision boundaries
- Can we **mitigate** SB?

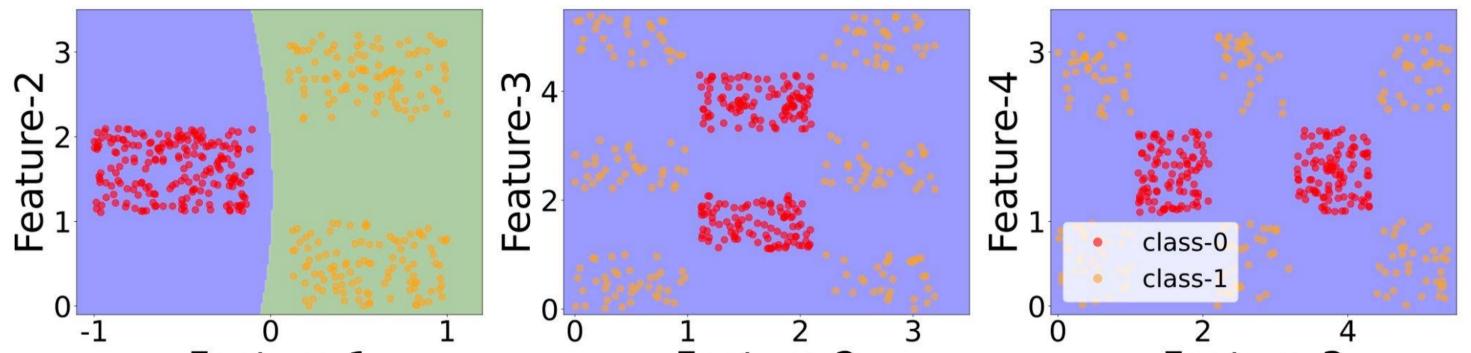
In the **initial epochs**, the model learned by SGD can be explained by a linear classifier, and later as the epochs progress, SGD learns functions of increasing complexity.

- Complex features are often overshadowed by the amplification and replication of simpler features
- Ensembling and Adversarial training fail to effectively address the limitations imposed by this bias

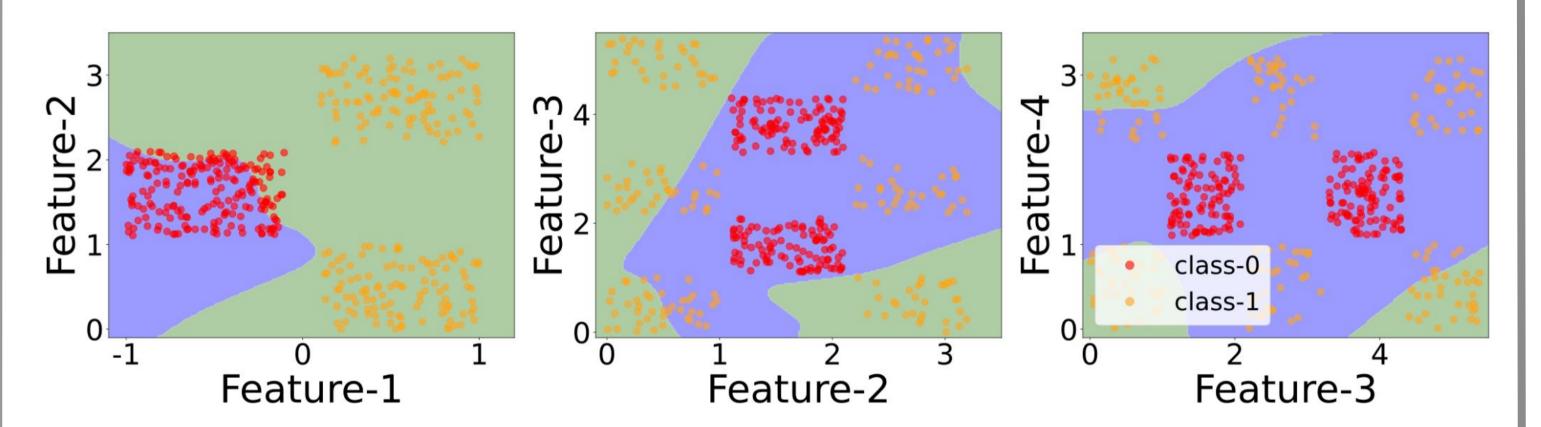
Effect of Noisy Perturbations in Data

Hypothesis: Training neural networks with SGD under noisy data can partially mitigate simplicity bias.

• We consider a 4-dimensional slab data, with each dimension having increasing complexity to classify the data.

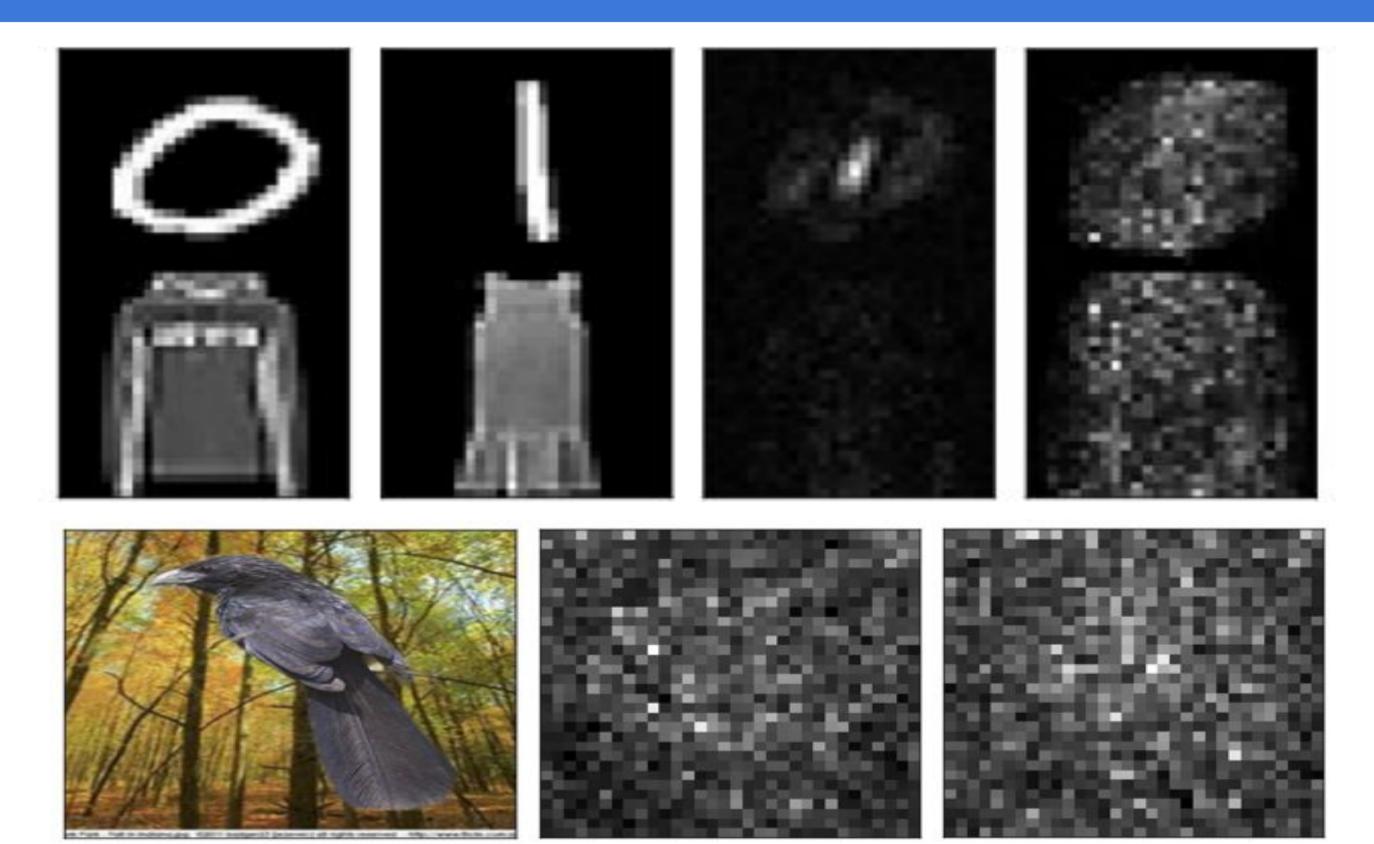


Feature-3 Feature-1 Feature-2 Learned decision depends only on the first two dimensions.



Training on noisy data leads to dependence on the other dimensions.

Datasets for Measuring Feature Dependence



WaterBirds & Dominoes Dataset with Gram matrix

Randomized Performance

Data	Standard Training		Noisy Pre-training		
	MNIST Rnd.	F-MNIST Rnd.	MNIST Rnd.	F-MNIST Rnd.	
\mathcal{D}	$52.5{\scriptstyle~\pm 0.33}$	$98.3{\scriptstyle~\pm 0.05}$	53.6 ± 1.56	$88.6{\scriptstyle~\pm0.76}$	
\mathcal{D}'	$93.1{\scriptstyle~\pm 0.33}$	56.5 ± 0.42	81.2 ± 1.02	$57.2{\scriptstyle~\pm1.50}$	

Data	Standard	Training	Noisy Pre-training	
	In-group	Out-group	In-group	Out-group
\mathcal{D}	85.2 ± 0.43	$38.5{\scriptstyle~\pm 0.88}$	78.1 ± 1.02	44.1 ± 1.60
\mathcal{D}'	84.1 ± 0.48	44.4 ± 0.67	77.8 ± 1.15	46.9 ± 0.92

Parallels of Label Smoothing

Ground truth labels are a mixture of one-hot-vectors and uniform distribution that acts as addition of noise to ground truth.

Data	LS	Standard Training		Noisy Pre-training	
	coeff.	In-group	Out-group	In-group	Out-group
\mathcal{D}	0.0	$85.2{\scriptstyle~\pm 0.43}$	$38.5{\scriptstyle~\pm 0.88}$	78.1 ± 1.02	$44.1{\scriptstyle~\pm1.60}$
	0.2	$84.4{\scriptstyle~\pm0.42}$	$43.5{\scriptstyle~\pm3.62}$	$77.3{\scriptstyle~\pm0.75}$	51.1 ± 2.17
\mathcal{D}'	0.0	$84.1{\scriptstyle~\pm 0.48}$	$44.4{\scriptstyle~\pm 0.67}$	77.8 ± 1.15	$46.9{\scriptstyle~\pm 0.92}$
	0.2	$83.4{\scriptstyle~\pm0.49}$	$49.1{\scriptstyle~\pm3.63}$	$78.5{\scriptstyle~\pm 0.28}$	52.2 ± 1.29

Discussion & Conclusions

- local minimas.
- Overparameterized neural networks can learn more complex and diverse features with the right initialization.
- Deep neural networks learn broader set of features when pre-trained on noisy labels

All Models 100% Training Accuracy

WaterBirds Dataset

WaterBirds with 100% (D) and 95% (D') bg correlation

• Although SGD has strong implicit regularization, we show that noisy-label pre-training can successfully trap models in complex

