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INTRODUCTION
❖ Speech Emotion Recognition (SER) systems play a critical role in 

human-computer interaction.
❖ The subjective nature of emotions and complex speech patterns make 

accurate emotion recognition difficult for machines.
❖ Challenge: Current methods involve complex models that demand high 

computational resources, limiting real-time and device-based deployment.
❖ Impact: Enables resource-efficient SER systems for edge devices and IoT.
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PROPOSED METHOD

PROBLEM ANALYSIS & MOTIVATION
❖ Motivation: Fixed precision approaches often overlook the varying importance 

of different layers in DNN, leading to performance degradation.
❖ Mixed-precision quantization can address the limitations of fixed precision 

approaches, offering a better trade-off between model size and accuracy.
❖ Solution: Adaptive quantization ensures efficiency without sacrificing 

performance. A novel lightweight MLP model with adaptive quantization 
enhances SER performance while reducing resource requirements.

❖ Efficiency: The model achieves competitive or superior performance with 
significantly fewer parameters (169K) and an average bit-width of about 2 bits.

❖ Model Size: The maximum model size is reduced to just 56 KB, making the 
model highly efficient for deployment on resource-constrained devices.

❖ Architecture Advantage: The simple architecture with minimal parameters 
ensures fast inference and reduced resource consumption.

❖ Limitations: The study does not include cross-dataset experiments to assess 
the model's generalizability and robustness across different datasets.

❖ Future Work: Investigate other advanced model compression techniques for 
further model optimization on diverse datasets.
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OBJECTIVES
❖ Develop a robust SER framework leveraging adaptive layer-wise quantization 

to reduce model size. 

❖ Optimize layer bit-widths to balance performance and compression.

❖ SER classification task identifies emotions from speech data as: 
Happiness, Sadness, Anger, Fear, Surprise, Disgust, and Neutral.

❖ Feature Extraction: Features like MFCC, Chroma, Mel-spectrogram ensure 
optimal input representation for accurate emotion recognition.

❖ Baseline MLP Classifier: A compact Multilayer Perceptron (MLP) model 
designed for efficient Speech Emotion Recognition.

❖ An innovative approach to accurately calculate layer importance, crucial for 
adaptive quantization and optimizing model performance.

❖ Layer Ranking: Layers are prioritized based on importance metrics, 
ensuring critical layers are quantized first to optimize performance and 
resource efficiency.

❖ Layer-wise Adaptive Quantization to reduce computational complexity while 
maintaining high accuracy.

❖ Bit-Width Allocation: Assigns optimal bit-width precision to each layer 
based on importance to minimize size while preserving accuracy. Supports 
mixed-precision quantization for further optimization.

❖ Performance Threshold: Ensures that performance degradation remains 
well within an acceptable margin, ensuring model reliability during 
quantization.
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Figure 3: Illustration of dose-volume indices clinical 
parameters (in Gy) for PTV and Spinal cord volumes.

❖ Lightweight MLP Design: A compact MLP model with 3 hidden layers (256, 
512, 64 neurons), totaling 169K parameters for the SER task.

❖ Implementation details: Adam optimizer with a learning rate of 0.001, 
Cross-Entropy loss, a batch size of 32, and early stopping to prevent 
overfitting. Dropout rate of 0.1 applied to enhance generalization.

❖ Evaluation Metrics: Accuracy & Average Bit-width

❖ Quantization Evaluation: The performance of quantized models is 
compared to their full-precision counterparts (accuracy and model size)

❖ Fixed-bit quantization achieves model size reductions, with minor accuracy 
drops as bit-width decreases.

❖ Our adaptive quantization method achieves near-baseline accuracy while 
significantly reducing model size and average bit-width, with substantial 
improvements over fixed-bit quantization.

❖ Model Comparison: Several models like MLP, LSTM, AttentionGRU, and 
1DCNN are evaluated for SER tasks.

❖ Average Bit-width Reduction: 1.22 bits (TESS), 2 bits (EMODB), and 2.69 
bits (SAVEE) using our adaptive quantization instead of 32 bits.

Datasets TESS EMODB SAVEE
Model Size (KB) Acc. (%) Size Acc. (%) Size Acc. 

(%)
Baseline (32-bit ) 676 99.29 676 74.07 676 81.25

Fixed Q (8-bit) 169 99.29 169 74.07 169 81.25
Fixed Q (7-bit) 147 99.29 147 74.07 147 81.25
Fixed Q (6-bit) 126 99.29 126 74.07 126 81.25
Fixed Q (5-bit) 105 99.29 105 72.22 105 81.25
Fixed Q (4-bit) 84 99.29 84 74.07 84 81.25
Fixed Q (3-bit) 63 99.29 63 75.93 63 79.17
Fixed Q (2-bit) 42 97.86 42 75.93 42 68.75
Fixed Q (1-bit) 21 96.43 21 64.81 21 70.83

Adaptive Quantization 25 99.29 43 75.93 56 81.25

Dataset # Samples # Speakers Gender (M/F) # Emotions
EMODB 535 10 5/5 7
SAVEE 480 4 4/0 7
TESS 2800 2 0/2 7
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