

Weight-Sharing Method for Upsampling Layer From Feature Embedding Recursive Block

Jinwoo Hyun¹, YunKyong Hyon², Mi Ra Lee², Sunju Lee², Taeyoung Ha², Young Rock Kim¹

¹Hankuk University of Foreign Studies, Republic of Korea ²National Institute for Mathematical Sciences, Republic of Korea

Experimental Results

Introduction

- Inverse convolution estimation is required for the upsampling layers
- inverse convolution
- convolution while **sharing weights** of the trained convolution layers

Figure 2. Weight-sharing method for model compression

• **Removes noise** between objects more effectively and captures the structure of letters more accurately

Table 1. Qu	uantitative	evaluation	of	LPF-based	SR	models
-------------	-------------	------------	----	-----------	----	--------

Model	Scale	Set5	Set14	BSDS100	Urban100	MANGA109
		PSNR / SSIM	PSNR / SSIM	PSNR / SSIM	PSNR / SSIM	PSNR / SSIM
Bicubic LapSRN	$2 \times$	33.69 / 0.931 37.24 / 0.957	30.25 / 0.870 32.78 / 0.910	29.57 / 0.844 31.78 / 0.892	26.89 / 0.841 30.60 / 0.911	30.86 / 0.936 36.73 / 0.971
MS-LapSRN CMS-LapSRN (1st ConV) CMS-LapSRN (3rd ConV) CMS-LapSRN (5th ConV)		36.76 / 0.955 36.65 / 0.954 36.88 / 0.955 36.46 / 0.954	32.57 / 0.908 32.50 / 0.906 32.61 / 0.908 32.38 / 0.905	31.38 / 0.888 31.31 / 0.886 31.44 / 0.888 31.23 / 0.885	29.59 / 0.899 29.44 / 0.895 29.61 / 0.898 29.34 / 0.894	36.16 / 0.970 36.04 / 0.967 36.31 / 0.970 35.37 / 0.968
Bicubic LapSRN MS-LapSRN CMS-LapSRN (1st ConV) CMS-LapSRN (3rd ConV) CMS-LapSRN (5th ConV)	$4 \times$	28.43 / 0.811 31.33 / 0.884 31.48 / 0.885 31.44 / 0.884 31.51 / 0.884 31.52 / 0.884	26.01 / 0.704 27.80 / 0.769 28.19 / 0.771 28.20 / 0.771 28.19 / 0.770 28.19 / 0.769	25.97 / 0.670 27.31 / 0.724 27.30 / 0.726 27.31 / 0.726 27.31 / 0.726 27.32 / 0.726 27.31 / 0.724	23.15 / 0.660 25.26 / 0.757 25.35 / 0.761 25.36 / 0.761 25.38 / 0.762 25.29 / 0.758	24.93 / 0.790 29.03 / 0.886 29.27 / 0.890 29.26 / 0.890 29.37 / 0.891 29.17 / 0.888
Bicubic LapSRN MS-LapSRN CMS-LapSRN (1st ConV) CMS-LapSRN (3rd ConV) CMS-LapSRN (5th ConV)	8×	24.40 / 0.658 26.19 / 0.750 26.39 / 0.754 26.34 / 0.753 26.40 / 0.756 26.35 / 0.753	23.10 / 0.566 24.29 / 0.624 24.66 / 0.629 24.60 / 0.627 24.68 / 0.629 24.60 / 0.627	23.67 / 0.548 24.61 / 0.585 24.61 / 0.587 24.61 / 0.587 24.60 / 0.587 24.60 / 0.586	20.74 / 0.516 21.97 / 0.589 22.09 / 0.596 22.08 / 0.596 22.12 / 0.598 22.05 / 0.594	21.47 / 0.650 23.72 / 0.741 23.87 / 0.751 23.86 / 0.751 23.92 / 0.754 23.82 / 0.749

Machine Learning and Compression Workshop @ NeurIPS 2024