VRVQ: Variable Bitrate Residual Vector Quantization for Audio Compression

Yunkee Chae^{1,3*}, Woosung Choi¹, Yuhta Takida¹, Junghyun Koo¹, Yukara Ikemiya¹, Zhi Zhong², Kin Wai Cheuk¹, Marco A. Martínez-Ramírez¹, Kyogu Lee^{3,4,5}, Wei-Hsiang Liao¹, Yuki Mitsufuji^{1,2} ¹Sony AI, ²Sony Group Corporation, Tokyo, Japan, ³IPAI, ⁴AIIS, ⁵Department of Intelligence and Information, Seoul National University

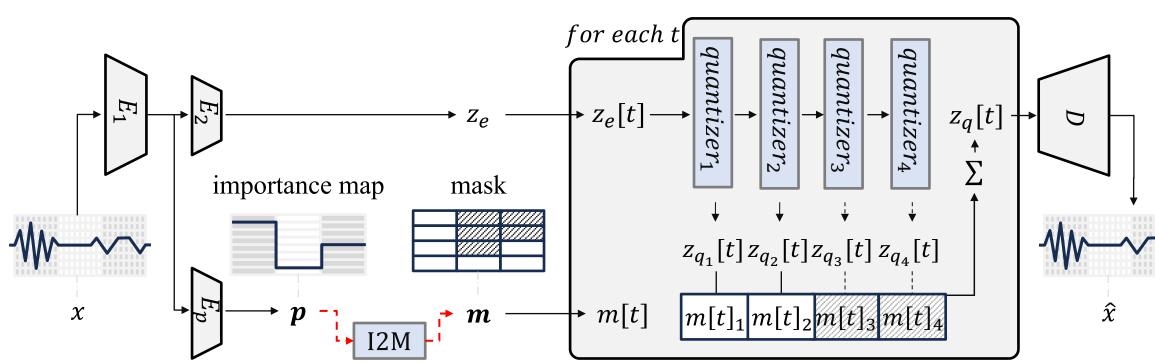
Motivation

- Recent SOTA neural audio codecs have adopted residual vector quantization (RVQ).
- The current RVQ codec uses the same number of codebooks for each time frame.
- In other words, once the target bandwidth is set, it allocates a **constant bitrate (CBR)** across all frames
- CBR can lead to a waste of bitrate in frames with low information content, such as silence.

Contribution

- We propose Variable Bitrate (VBR) RVQ framework
- : An RVQ that allocates different bitrates to each frame by using different number of codebooks per frame.
- We apply VBR scheme to RVQ (or RVQGAN) for the first time.
- We base our approach on *importance map*, which has been employed in image compression.
- We identify issues with existing training methods and propose an improved approach to enhance the gradient flow.

VBR RVQ with Importance Map



- We train audio codec jointly with importance subnet
- $p \in (0,1)^T$
- Optimize rate-distortion tradeoff: $\mathcal{L} = \mathcal{L}_D + \beta \mathcal{L}_R$
- \mathcal{L}_D : reconstruction loss used in the existing RVQGAN.

•
$$\mathcal{L}_R = \frac{1}{T} \sum_{t=1}^T |p[t] - 0| = \frac{1}{T} \sum_{t=1}^T p[t]$$

 $I2M(p[t]) = [H^0(S(p[t]))), \dots, H^{N_q-1}(S(p[t]))]$ $-S(p) = N_q \cdot p \in (0, N_q)$

Sony Al

SONY

• This operation is non-differentiable

non-differentiable

 $H^k(s)$

--→ gradient estimated during backward

Smoothing the Surrogate Function

- We define the "surrogate" of the H^k for the backpropagation:
- We use the straight-through estimation (STE)

$$H \mapsto I2M_{soft}(x) + sg\left(I2M(x) - I2M_{soft}(x)\right)$$

- Previous work [1] in the image compression model used: $f_{\rm I}^{k} = \max(\min(s - k, 1), 0)$ (i.e., "identity for the backward pass")
- f_I makes the model suboptimal and degrades the performance of VRVQ - Gradient does not flow through large regions due to max and min ops. - Non-zero gradient can exist for only a single $k \in \{0, \dots, N_q - 1\}$
- To address this, we propose a smooth surrogate function

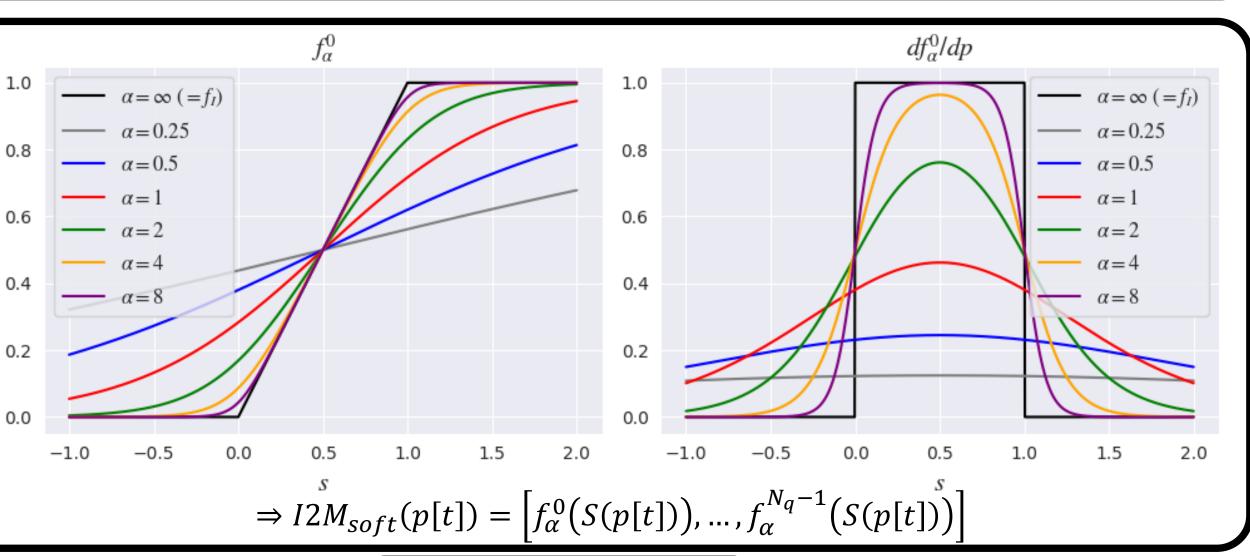
$$f_{\alpha}^{k}(s) = \frac{1}{2\alpha} \log \left(\frac{\cosh(\alpha(s-k))}{\cosh(\alpha(-s+k+1))} \right) + \frac{1}{2}$$

Random Scaling for Rate Control

• Previous works:

- Once model is trained, **importance map** *p* **is fixed** for the input *x*.
- This restricts the flexibility of the model in terms of rate control within a single model.
- Proposed:
 - Meanwhile, RVQ-based models control the rate using structured dropout
 - with **random sampling** of number of codebook $n_q \in \{1, ..., N_q\}$.
 - We base our approach on the importance map and incorporate random scaling - allowing a single model to support multiple bitrates.
- **Random Scaling:** $S(p) = l \cdot p$, where $l \sim Uni([L_{min}, L_{max}])$

Importance Map Samples / Results



Dataset / Setups

Dataset

- Train Set
 - Speech: DAPS, CommonVoice, VCTK
 - Music: MUSDB18, MTG-Jamendo
 - General: AudioSet
- Eval Set
 - Speech: DAPS test (F10, M10)
 - Music: MUSDB18 test
 - General: AudioSet eval

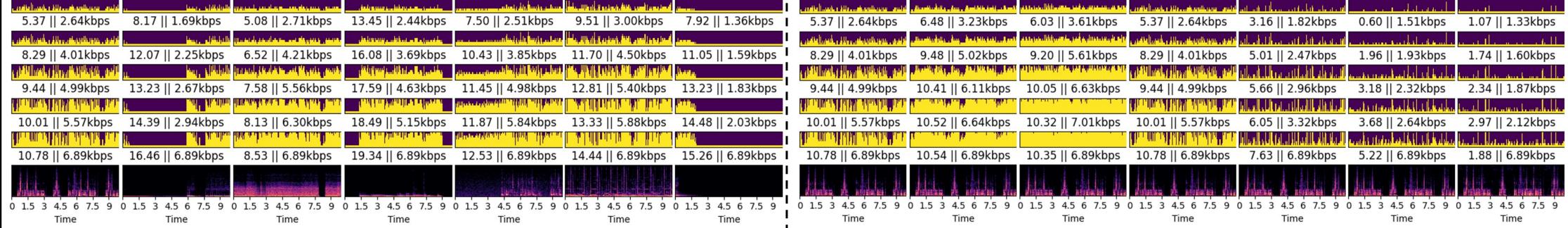
Setups

- Codec: DAC [2] with $N_q = 8$
 - Due to transmission cost $\left[\log_2 N_q\right]$ of VRVQ

 $\alpha = \infty$

- i.e., +0.238 kbps for bitrate calculation.
- Rate loss weight $\beta = 2$
- Batch size: 32
- Train iteration: 300k for each exp.
- $L_{min} = 1$, $L_{max} = 48$

							$\alpha = 0.25$	$\alpha = 0.5$	lpha = 1	$\alpha = 2$	$\alpha = 4$	$\alpha = 8$	$\alpha = \infty$
4.03 2.16kbps 6	6.92 1.51kbps	4.40 2.22kbps	11.90 2.04kbps	5.82 2.09kbps	8.37 2.42kbps	5.80 1.27kbps	4.03 2.16kbps	4.91 2.57kbps	4.41 2.86kbps	4.03 2.16kbps	2.05 1.59kbps	-0.09 1.36kbps	0.80 1.23kbps



(a) Codebook usage based on importance map with varying l for seven audio samples when $\alpha = 2$. The bottom (b) Codebook usage based on importance map for the same sample with varying α values. The bottom row row shows the spectrogram of the input audio. shows the spectrogram of the reconstructed audio with the full number of codebooks.

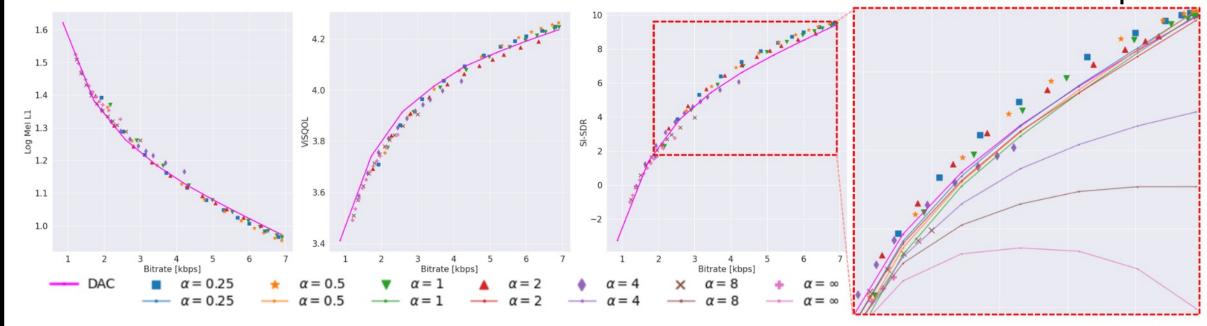


Figure 2: The results of VRVQ across different α . The points marked with various markers represent the results of inference at different scaling factor, l=4, 6, 8, 10, 12, 14, 16, 18, 20, 24, and 32, in VBR mode. In the rightmost plot, we display solid lines representing the results of inference in CBR mode • for each model.

Importance Map

- Each row of the importance maps denotes the level *l* from 4 to 26.
- For silence, importance map decides to use only one codebook, regardless how high the importance map is scaled.
- As alpha increases, the importance map becomes more spiky and uses fewer codebooks, and at the base lien f_I , it doesn't utilize many codebooks. **Rate-Distortion (RD) Curves**
- Solid line refers to the results of CBR mode of our models: simply ignoring importance map and using a constant number of codebooks for all frames. The performance (RD-curve) degrades as α increases.
 - When $\alpha \leq 2$, performs better in RD compared to DAC.

References

[1] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool, "Conditional probability models for deep image compression," in CVPR 2018 [2] R. Kumar, P. Seetharaman, A. Luebs, I. Kumar, and K. Kumar, "High-fidelity audio compression with improved rvqgan," in NeurIPS 2023