
VRVQ: Variable Bitrate Residual Vector Quantization 
for Audio Compression

Motivation

VBR RVQ with Importance Map

• Recent SOTA neural audio codecs have adopted residual vector quantization (RVQ).
• The current RVQ codec uses the same number of codebooks for each time frame.
• In other words, once the target bandwidth is set, it allocates a constant bitrate (CBR) across all frames
• CBR can lead to a waste of bitrate in frames with low information content, such as silence.

Contribution
• We propose Variable Bitrate (VBR) RVQ framework

: An RVQ that allocates different bitrates to each frame by using different number of codebooks per frame.
• We apply VBR scheme to RVQ (or RVQGAN) for the first time.
• We base our approach on importance map, which has been employed in image compression.
• We identify issues with existing training methods and propose an improved approach to enhance the gradient flow.
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• We train audio codec jointly with importance subnet
• 𝑝 ∈ 0,1 !

• Optimize rate-distortion tradeoff: 𝓛 = 𝓛𝑫 + 𝜷𝓛𝑹
• ℒ$ : reconstruction loss used in the existing RVQGAN.
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• This operation is non-differentiable
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Smoothing the Surrogate Function
• We define the “surrogate” of the 𝐻. for the backpropagation:
• We use the straight-through estimation (STE)

𝑥 ↦ 𝐼2𝑀/01' 𝑥 + 𝑠𝑔 𝐼2𝑀 𝑥 − 𝐼2𝑀/01' 𝑥
• Previous work [1] in the image compression model used:
𝑓2. = max min 𝑠 − 𝑘, 1 , 0 (i.e., “identity for the backward pass”)

• 𝑓3 makes the model suboptimal and degrades the performance of VRVQ
- Gradient does not flow through large regions due to max and min ops.
- Non-zero gradient can exist for only a single 𝑘 ∈ 0,⋯ ,𝑁4 − 1

• To address this, we propose a smooth surrogate function
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Random Scaling for Rate Control
• Previous works: 

- Once model is trained, importance map 𝒑 is fixed for the input 𝑥.
- This restricts the flexibility of the model in terms of rate control within a single model.

• Proposed:
- Meanwhile, RVQ-based models control the rate using structured dropout

- with random sampling of number of codebook 𝑛4 ∈ 1,… ,𝑁4 .
- We base our approach on the importance map and incorporate random scaling

- allowing a single model to support multiple bitrates.
• Random Scaling: 𝑆 𝑝 = 𝑙 ⋅ 𝑝,  where 𝑙 ∼ 𝑈𝑛𝑖 𝐿678, 𝐿69:

Dataset / Setups
Dataset
• Train Set

- Speech: DAPS, CommonVoice, VCTK
- Music: MUSDB18, MTG-Jamendo
- General: AudioSet

• Eval Set
- Speech: DAPS test (F10, M10)
- Music: MUSDB18 test
- General: AudioSet eval

Setups
• Codec: DAC [2] with 𝑁! = 8

- Due to transmission cost log%𝑁! of 
VRVQ
- i.e., +0.238 kbps for bitrate 
calculation.

• Rate loss weight 𝛽 = 2
• Batch size: 32
• Train iteration: 300k for each exp.
• 𝐿)*+ = 1, 𝐿),- = 48

Importance Map Samples / Results
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Importance Map
• Each row of the importance maps denotes the level 𝒍 from 4 to 26.
• For silence, importance map decides to use only one codebook, regardless 

how high the importance map is scaled.
• As alpha increases, the importance map becomes more spiky and uses fewer 

codebooks, and at the base lien 𝑓3, it doesn’t utilize many codebooks.
Rate-Distortion (RD) Curves
• Solid line refers to the results of CBR mode of our models: simply ignoring 

importance map and using a constant number of codebooks for all frames.
• The performance (RD-curve) degrades as 𝛼 increases.
• When 𝛼 ≤ 2, performs better in RD compared to DAC.
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