

Adaptive Quantization and Pruning of Deep Neural Networks via Layer Importance Estimation

Tushar Shinde

School of Engineering and Science, Indian Institute of Technology Madras Zanzibar, Tanzania

INTRODUCTION

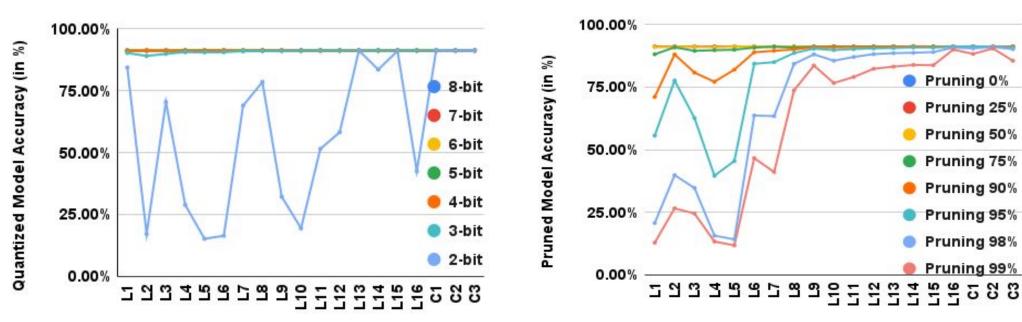
- Deep Neural Networks (DNNs) achieve state-of-the-art performance in * domains like computer vision and speech processing.
- **Deployment Challenges:** High computational and storage demands make * DNNs unsuitable for resource-constrained edge devices.
- Traditional uniform quantization and pruning often fail to maintain accuracy, as * layers contribute unequally to model performance.

OBJECTIVES

- Introduce a **layer-wise quantization** method that assigns bit-widths based on * layer importance to optimize model size without compromising accuracy.
- Design an **adaptive pruning** strategy that identifies and prunes less * important parameters effectively while maintaining model performance.
- **Combine Quantization and Pruning:** Investigate the synergy of adaptive ** quantization and pruning to achieve compact yet accurate DNNs.

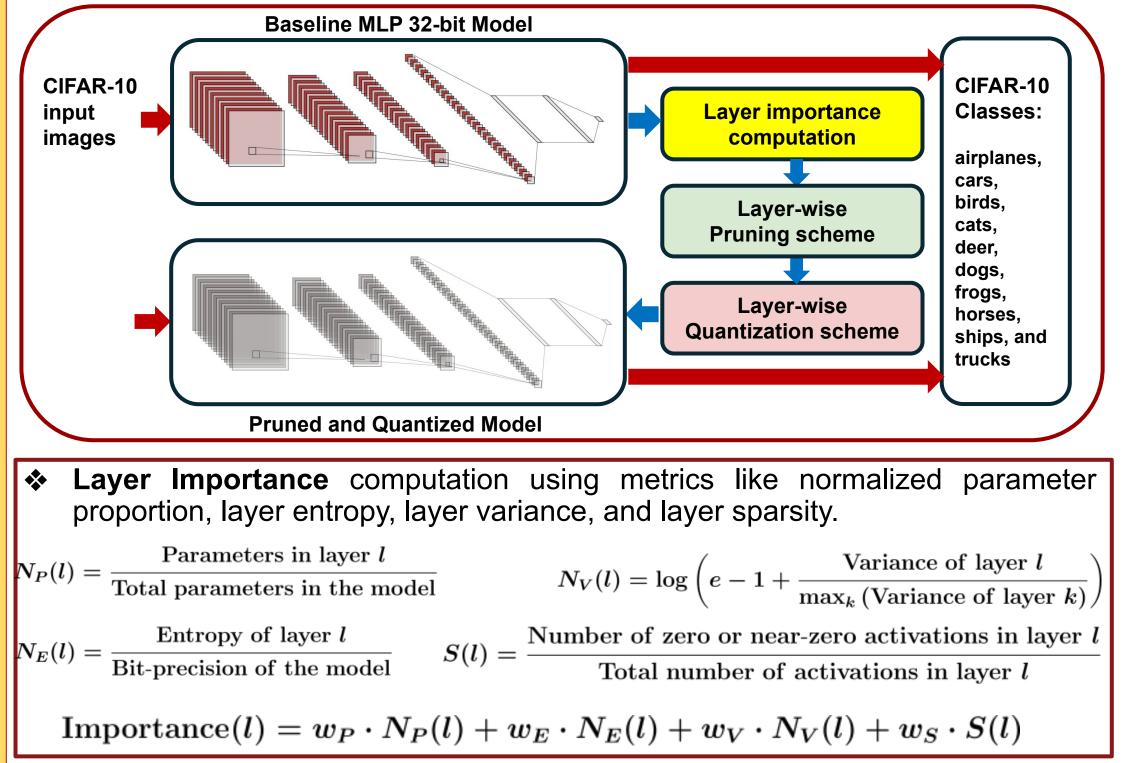
PROBLEM ANALYSIS & MOTIVATION

- **Motivation:** Fixed compression approaches often overlook the varying importance of different layers in DNN, leading to performance degradation.
- Mixed-precision approaches could improve efficiency. *
- **Solution:** Adaptive quantization and pruning methods that tailor bit-widths and * sparsity thresholds layer-wise for optimal trade-offs.



Analysis of individual layers: a) varying bit-precisions and b) varying pruning percentages

PROPOSED METHOD



CIFAR-10 classification task is a standard problem in ML and computer * vision, where the goal is to classify images into one of 10 categories.

- **Layer Importance** is computed to guide quantization and pruning decisions. *
- **Iterative Optimization:** Layers ranked by importance. Sequential optimization * adjusts bit-width and pruning thresholds, validating performance at each step.
- Layer-wise Adaptive Pruning: Adapts pruning per layer to balance size * reduction and accuracy. Iterative optimization ensures maximal pruning with tolerable accuracy loss. Adaptive pruning threshold is tuned for each layer.

$$\hat{W}_{l,ij} = egin{cases} W_{l,ij} & ext{if } |W_{l,ij}| > Z_T(l) \ 0 & ext{if } |W_{l,ij}| \le Z_T(l) \end{cases} \qquad Z_T(l) = k(l) imes \sigma(l)$$

- Layer-wise Adaptive Quantization: Adapts bit-width per layer to balance size * reduction and accuracy. Iterative optimization ensures minimal bit-width with tolerable accuracy loss.
- * **Performance Threshold:** Ensures that performance degradation remains well within an acceptable margin, ensuring model reliability during model pruning and quantization.

 $T_{\text{margin}}(l) = T_{\text{margin}} \times \text{Importance}(l)$

RESULTS

- **Dataset:** CIFAR-10 dataset comprises 60,000 32x32 color images across 10 * classes, with data normalized to [0, 1] and augmented via horizontal flips and random crops.
- DNN Models Tested: VGG19, ResNet18, ResNet34 *
- Implementation details: *
 - Trained from scratch for 100 epochs.
 - SGD optimizer with learning rate=0.02, batch size=128, and Cross-Entropy loss. 0
- Hyper-parameters Setting: *

90 ·

80

(%) 60

50 gch

3 40

∛ Βigι

Res

10

1

- All weights are equal (sum to 1) for layer importance computation. Ο
- Weight quantization from 1-bit to 8-bit precision. Ο
- Pruning thresholds started from 99.7% (k(I)=3) to no pruning (k(I)=0).

- Baseline: VGG19: 91.16%, ResNet18: 86.06%, ResNet34: 86.22%. *
- **Fixed-bit quantization** (e.g., 3-bit) led to significant accuracy drops. *
- **Fixed pruning** (e.g., 75%) too resulted in notable accuracy degradation. *
- Our adaptive method (Quantization only, Pruning only, and Combined) * achieves near-baseline accuracy while significantly reducing model size.
- **Model Comparison:** Proposed Method vs. APoT and LIEI-NNQ: *****
 - Existing methods suffered higher accuracy losses at low average bit-widths. 0
 - Our approach maintained accuracy at significantly lower average bit-widths.
- **Average bit-width reduction:** Quantization (combined pruning+Q) *
 - VGG19: 2.24 bits (1.08),
 - ResNet18: 3.41 bits (2.66),

Evaluation Metrics: Accuracy & average bit-width $\bar{b} = \sum b(l) \cdot S(l) \cdot N_P(l)$ **

• ResNet34: 4.18 bits (2.42).

Proposed AQP

Table: Performance comparison with existing methods across DNNs

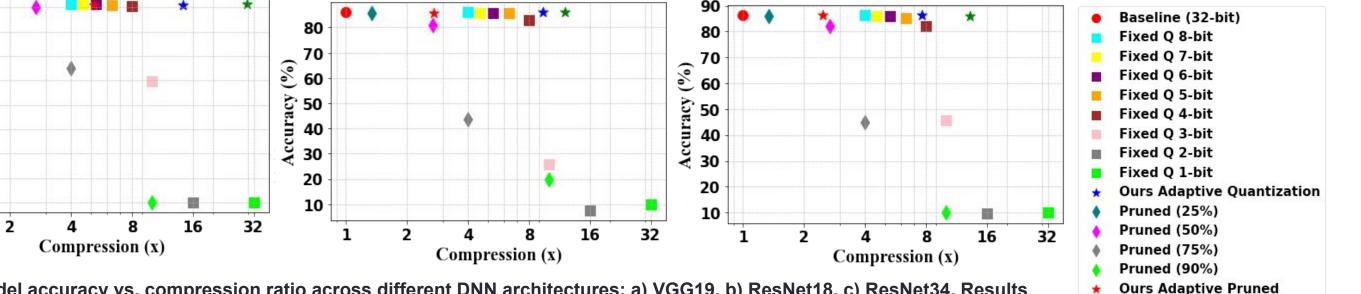


Figure: Model accuracy vs. compression ratio across different DNN architectures: a) VGG19, b) ResNet18, c) ResNet34. Results for different variants of fixed and adaptive pruning and quantization approaches. Our method is highlighted with star marker.

Method	Model	#Parameters (M)	Avg. bit-width	Parameters Size (MB)	Accuracy difference (in %)
Proposed AQP	VGG19	20.04	1.08	2.72	0.00%
Proposed AQP	ResNet18	11.69	2.66	3.17	0.00%
Proposed AQP	ResNet34	21.8	2.42	6.52	-0.09%
APoT	ResNet18	11.69	4	5.87	-0.40%
APoT	ResNet18	11.69	3	4.38	-0.84%
APoT	ResNet18	11.69	2	2.92	-1.75%
LIEI-NNQ	ResNet18	11.69	1.96	2.77	-1.55%
APoT	MobileNetV2	3.47	4	1.74	-4.25%
APoT	MobileNetV2	3.47	3	1.30	-10.39%
APoT	MobileNetV2	3.47	2	0.87	-24.45%
LIEI-NNQ	MobileNetV2	3.47	3.32	1.45	-9.42%

CONCLUSION

- **Contribution:** Introduced an adaptive layer-wise quantization and pruning method for enhancing DNN efficiency while preserving accuracy.
- **Results:** The adaptive approach maintained accuracy with minimal loss across * varying bit-widths. Outperformed uniform quantization and pruning techniques.
- Architecture Advantage: Our approach optimizes each layer's precision, achieving efficient models, ideal for resource-constrained devices.
- **Limitations:** Our method may be influenced by the weight values used in layer importance computation, requiring further investigation.
- Future Work: Investigate other advanced model compression techniques for further model optimization on diverse datasets to validate its generalizability.

REFERENCES

- [1] Krizhevsky, A. and Hinton, G., 2009. Learning multiple layers of features from tiny images.
- [2] Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
- [3] He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
- [4] Liu, H., Elkerdawy, S., Ray, N. and Elhoushi, M., 2021. Layer importance estimation with imprinting for neural network quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2408-2417).
- [5] Li, Y., Dong, X. and Wang, W., 2019. Additive powers-of-two quantization: An efficient non-uniform discretization for neural networks. arXiv preprint arXiv:1909.13144

ACKNOWLEDGMENTS

This work was in part supported by the Walmart Center of Technical Excellence (IIT Madras) Project Grant Award.

Paper