

Social influence maximization

• Social influence maximization studies how to strategically select a pre-specified small proportion of nodes in the social network, the early adopters or seeds, so that the outreach generated by a diffusion process that starts at these early adopters is maximized.

• The problem of selecting early adopters is NP-hard, so various heuristics have been proposed. Most algorithms purely rely on the graph topology and are agnostic to users' demographics, which raises significant fairness concerns.

• For this reason, many definitions of fairness were proposed. However, all these definitions involve a marginal expected value of fairness in groups, without considering **the correlations** – or other higher-order moments – for the **joint** probability distribution of different groups adopting the information.

Fairness in Social Influence Maximization via Optimal Transport

Shubham Chowdhary, Giulia De Pasquale, Nicolas Lanzetti, Ana-Andreea Stoica, Florian Dörfler

Motivating example

Consider the following stochastic outcomes:

Outcome γ_a : in 50% of the cases everyone receives the information and in 50% no one.

Outcome γ_b : in 25% of the cases everyone receives the information, in 25% no one, in 25% only group 1, and in \gtrsim 25% only group 2.

Which outcome is fair?

In γ_a , the percentage of members of group 1 who get the information *always* coincides with the percentage of people of group 2. In γ_b , this is not always true.

From a fairness perspective, γ_a and γ_b encode very different outcomes ... but γ_a and γ_b have the same marginals and so we need to look at correlations.

Fairness via optimal transport

use optimal transport to compare stochastic outcomes: fairness is quantified via the optimal transport discrepancy from an ideal outcome

Ideal distribution: $\gamma^* = \delta_{(1,1)}$ (i.e., everyone receives the information)

Fairness-aware transportation cost:

Intuition: moving mass diagonally does not impact fairness, so it should not be penalized.

$$c((x_1, x_2), (y_1, y_2)) = ||z(x_1, x_2, y_1, y_2) - (x_1, x_2)||$$

= $\frac{\sqrt{2}}{2}|(x_2 - x_1) - (y_2 - y_1)|$

Mutual Fairness of a stochastic outcome γ $\mathsf{Fairness}(\gamma) = 1 - \sqrt{2}W_c(\gamma, \gamma^*) = \mathbb{E}_{(x_1, x_2) \sim \gamma}[1 - |x_1 - x_2|].$... which is just a "normalized" $W_c(\gamma, \gamma^*)$

Reminder: The optimal transport problem

For a transportation cost $c: ([0,1] \times [0,1]) \times ([0,1] \times [0,1]) \rightarrow \mathbb{R}_{\geq 0}$ the **optimal** transport discrepancy between $\gamma_a \in \mathcal{P}([0,1] \times [0,1])$ and $\gamma_b \in \mathcal{P}([0,1] \times [0,1])$ is

 $W_c(\gamma_a, \gamma_b) = \min_{\pi \in \Pi(\gamma_a, \gamma_b)} \mathbb{E}_{(x_1, x_2), (y_1, y_2) \sim \gamma}, [c((x_1, x_2), (y_1, y_2))]$

where $\Pi(\gamma_a, \gamma_b)$ is the set of probability distributions over so that its first marginal is γ_a and its second marginal is γ_b .

S3D: our fairness metric to select seeds

to define the β -fairness metric

$$\beta - \mathsf{Fairness}(\gamma) = 1 - \frac{\sqrt{2}}{\max\{1, 2 - 2\beta\}} W_{c_{\beta}}(\gamma, \gamma^{*}) \\ = \mathbb{E}_{(x_{1}, x_{2}) \sim \gamma} \left[1 - \frac{\beta |x_{1} - x_{2}| + (1 - \beta) |x_{1} + x_{2} - 2|}{\max\{1, 2 - 2\beta\}} \right]$$

Our algorithm:

1: $\mathcal{S} \leftarrow \{\}, S \leftarrow S_0$ 2: **for** *k* iterations **do** $S' \leftarrow \{\}$ **for** |*S*| iterations **do** $S' \leftarrow S' \cup \{v\} \mid v \sim V_S$ $V_{S} \leftarrow V_{S} \setminus V_{S'}$ $E_{S} \leftarrow -\text{BETA}_{FAIRNESS}(S, \beta)$ $E_{S'} \leftarrow -\text{BETA}_{\text{FAIRNESS}}(S', \beta)$ 10 $p_{\mathsf{accept}} \leftarrow \min\{1, \mathrm{e}^{E_{\mathcal{S}} - E_{\mathcal{S}'}}\}$ if $x \sim \mathcal{B}(p_{\text{accept}})$ then 12 $S^+ \leftarrow S'$ 13: else 14: if $x \sim \mathcal{B}(\epsilon)$ then 15: $S^+ \leftarrow \{\mathbf{v}_i\}_{i=1}^{|S|} \stackrel{|S|}{\sim} V_G$ 16: else 17: $S^+ \leftarrow S$ 18 $\mathcal{S} \leftarrow \mathcal{S} \cup \{\mathcal{S}^+\}$ 19: $S \leftarrow S^+$ 20: 21: $S^* \leftarrow S \in S \mid \text{BETA}_FAIRNESS(S, \beta)$ is maximum 22: **return** *S**

Performance

blue: nominal outreach distribution

Comparison with other algorithms

 β -fairness: revisit the transportation cost to tradeoff fairness and efficiency, $c_{\beta}((x_1, x_2), (y_1, y_2)) = \beta \| z(x_1, x_2, y_1, y_2) - (x_1, x_2) \| + (1 - \beta) \| z(x_1, x_2, y_1, y_2) - (y_1, y_2) \|,$

> ▷ initial collection of candidates, running seedset \triangleright configurable *k*

 $V_S \leftarrow$ nodes reachable from S via cascade, using SEEDSET_REACH routine

 \triangleright searching nearby states, $V_{S'}$, to get S' (??)

 $V_{S'} \leftarrow$ nodes reachable from S' in a fixed horizon, using SEEDSET_REACH

 \triangleright expected potential energy defined on β -fairness

 \triangleright S' acceptance on energy minimization Metropolis sampling ⊳ get a better seedset

> \triangleright for some small constant ϵ ▷ random seedset

> > ▷ retain existing choice

▷ for next iteration ⊳ via S3D_ITERATE

red: outreach distribution with our algorithm

December 10th 2024 – December 15th 2024