LOOKBACK PROPHET INEQUALITIES

ZIYAD BENOMAR DORIAN BAUDRY

CRITEO

Ínría

ENSAE

Setting: Known probability distributions ${F}_{1},\ldots,{F}_{n}$ $\mathsf{Realisations}\ X_1 \thicksim F_1, ..., X_n \thicksim F_n$ observed sequentially If algorithm ALG stops at time $\tau \in [n]$, its payoff is

$$
\mathsf{ALG}(X_1, \ldots, X_n) = X_\tau
$$

Setting: Known probability distributions ${F}_{1},\ldots,{F}_{n}$ $\mathsf{Realisations}\ X_1 \thicksim F_1, ..., X_n \thicksim F_n$ observed sequentially If algorithm ALG stops at time $\tau \in [n]$, its payoff is

$$
\mathsf{ALG}(X_1, \ldots, X_n) = X_\tau
$$

Setting: Known probability distributions ${F}_{1},\ldots,{F}_{n}$ $\mathsf{Realisations}\ X_1 \thicksim F_1, ..., X_n \thicksim F_n$ observed sequentially If algorithm ALG stops at time $\tau \in [n]$, its payoff is

$$
\mathsf{ALG}(X_1, \ldots, X_n) = X_\tau
$$

Setting: Known probability distributions ${F}_{1},\ldots,{F}_{n}$ $\mathsf{Realisations}\ X_1 \thicksim F_1, ..., X_n \thicksim F_n$ observed sequentially If algorithm ALG stops at time $\tau \in [n]$, its payoff is

Setting: Known probability distributions ${F}_{1},\ldots,{F}_{n}$ $\mathsf{Realisations}\ X_1 \thicksim F_1, ..., X_n \thicksim F_n$ observed sequentially If algorithm ALG stops at time $\tau \in [n]$, its payoff is

Setting: Known probability distributions ${F}_{1},\ldots,{F}_{n}$ $\mathsf{Realisations}\ X_1 \thicksim F_1, ..., X_n \thicksim F_n$ observed sequentially If algorithm ALG stops at time $\tau \in [n]$, its payoff is

Setting: Known probability distributions ${F}_{1},\ldots,{F}_{n}$ $\mathsf{Realisations}\ X_1 \thicksim F_1, ..., X_n \thicksim F_n$ observed sequentially If algorithm ALG stops at time $\tau \in [n]$, its payoff is

Setting: Known probability distributions ${F}_{1},\ldots,{F}_{n}$ $\mathsf{Realisations}\ X_1 \thicksim F_1, ..., X_n \thicksim F_n$ observed sequentially If algorithm ALG stops at time $\tau \in [n]$, its payoff is

 $\overline{\mathsf{A}\mathsf{L}\mathsf{G}(X_1,\ldots,X_n)} = \overline{X_\tau}$

Irrevocable decisions! AL $G(X_1, ..., X_5) = 4$

Setting: Known probability distributions ${F}_{1},\ldots,{F}_{n}$ $\mathsf{Realisations}\ X_1 \thicksim F_1, ..., X_n \thicksim F_n$ observed sequentially If algorithm ALG stops at time $\tau \in [n]$, its payoff is

 $\overline{\mathsf{A}\mathsf{L}\mathsf{G}(X_1,\ldots,X_n)} = \overline{X_\tau}$

Definition: The competitive ratio of ALG is

$$
CR(ALG) = \inf_{F_1, \dots, F_n} \frac{\mathbb{E}[ALG(X_1, \dots, X_n)]}{\mathbb{E}[\max(X_1, \dots, X_n)]}
$$

Setting: Known probability distributions ${F}_{1},\,...,{F}_{n}$ $\mathsf{Realisations}\ X_1 \thicksim F_1, ..., X_n \thicksim F_n$ observed sequentially If algorithm ALG stops at time $\tau \in [n]$, its payoff is

 $ALG(X_1, ..., X_n) = X_{\tau}$

Definition: The competitive ratio of ALG is

$$
CR(ALG) = \inf_{F_1, \dots, F_n} \frac{\mathbb{E}[ALG(X_1, \dots, X_n)]}{\mathbb{E}[\max(X_1, \dots, X_n)]}
$$

Theorem: The best possible competitive ratio is 1/2.

ALG: Select the first value exceeding θ , with $\mathbb{P}(\max(X_1,...,X_n) \geq \theta) = \frac{1}{2}.$ 1 2

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Definition: Decay functions $\mathcal{D} = (D_1, D_2, ...)$

If ALG stops at time τ , its reward is

 $\overline{A L G^{\mathcal{D}}(X_1, ..., X_n)} = \max(X_{\tau}, D_1(X_{\tau-1}), D_2(X_{\tau-2}), ...)$

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Definition: Decay functions $\mathcal{D} = (D_1, D_2, ...)$

If ALG stops at time τ , its reward is

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Definition: Decay functions $\mathcal{D} = (D_1, D_2, ...)$

If ALG stops at time τ , its reward is

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Definition: Decay functions $\mathcal{D} = (D_1, D_2, ...)$

If ALG stops at time τ , its reward is

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Definition: Decay functions $\mathcal{D} = (D_1, D_2, ...)$

If ALG stops at time τ , its reward is

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Definition: Decay functions $\mathcal{D} = (D_1, D_2, ...)$

If ALG stops at time τ , its reward is

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Definition: Decay functions $\mathcal{D} = (D_1, D_2, ...)$

If ALG stops at time τ , its reward is

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Definition: Decay functions $\mathcal{D} = (D_1, D_2, ...)$

If ALG stops at time τ , its reward is

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Definition: Decay functions $\mathcal{D} = (D_1, D_2, ...)$

If ALG stops at time τ , its reward is

 $\mathsf{ALG}^{\mathcal{D}}(X_1, \ldots, X_n) = \max(X_{\tau}, D_1(X_{\tau-1}), D_2(X_{\tau-2}), \ldots)$

 $\mathsf{ALG}^{\mathcal{D}}(X_1,...,X_5) = \max(4, D_1(9), D_2(2))$

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Definition: Decay functions $\mathcal{D} = (D_1, D_2, ...)$

If ALG stops at time τ , its reward is

 $\mathsf{ALG}^{\mathcal{D}}(X_1, \ldots, X_n) = \max(X_{\tau}, D_1(X_{\tau-1}), D_2(X_{\tau-2}), \ldots)$

Assumptions:

- $\forall i, x : D_i(x) \in [0, x]$
- $\forall x: \quad i \mapsto D_i(x)$ is non-increasing
- $\forall i: x \mapsto D_i(x)$ is non-decreasing

Weakness: The model is too pessimistic,

rejections are often reversible in real-world scenarios

Definition: Decay functions $\mathcal{D} = (D_1, D_2, ...)$

If ALG stops at time τ , its reward is

$$
\mathsf{ALG}^{\mathscr{D}}(X_1, ..., X_n) = \max(X_{\tau}, D_1(X_{\tau-1}), D_2(X_{\tau-2}), ...)
$$

Examples:

- \bullet $D_i(x) = 0$ (standard prophet inequality)
- $D_i(x) = \gamma^i x$, with $\gamma \in [0,1]$
- $D_i(x) = x c_i$, with $c_1 \le c_2 \le ...$
- $D_i(x) \thicksim \mathscr{B}(p_i) \cdot x$, with $p_1 \geq p_2 \geq ...$ (our results extend to random functions)

 $D_1(x) \geq D_2(x) \geq ... \geq 0 \quad \Longrightarrow D_{\infty}(x) := \lim_{i \to \infty} D_i(x)$ exists *i*→∞ $D_i(x)$

 \overline{A} Instance $J_0 = (F_1, F_2) \quad \implies \quad \overline{A}$ LG $^{\mathscr{D}}(J_0) = \max(X_2, D_1(X_1))$

 $D_1(x) \geq D_2(x) \geq ... \geq 0 \quad \Longrightarrow D_{\infty}(x) := \lim_{i \to \infty} D_i(x)$ exists *i*→∞ $D_i(x)$

 $\mathsf{Instance}\; J_\infty=(F_1,0,\ldots,0,F_2) \quad \Longrightarrow \quad \mathsf{ALG}^\mathscr{D}(J_\infty)=\max(X_2,D_\infty(X_1))$

$$
D_1(x) \ge D_2(x) \ge \dots \ge 0 \implies D_{\infty}(x) := \lim_{i \to \infty} D_i(x) \text{ exists}
$$

$$
F_1
$$
\n
$$
F_2
$$
\n
$$
F_3
$$
\n
$$
F_4
$$
\n
$$
F_5
$$
\n
$$
F_6
$$
\n
$$
F_7
$$
\n
$$
F_8
$$
\n
$$
F_9
$$
\n
$$
F_9
$$
\n
$$
F_1
$$
\n
$$
F_4
$$
\n
$$
F_5
$$
\n
$$
F_7
$$
\n
$$
F_8
$$
\n
$$
F_9
$$
\n
$$
F_9
$$
\n
$$
F_1
$$
\n
$$
F_2
$$
\n
$$
F_3
$$
\n
$$
F_4
$$
\n
$$
F_5
$$
\n
$$
F_7
$$
\n
$$
F_8
$$
\n
$$
F_9
$$
\n
$$
F_9
$$
\n
$$
F_9
$$
\n
$$
F_1
$$
\n
$$
F_2
$$
\n
$$
F_3
$$
\n
$$
F_1
$$
\n
$$
F_2
$$
\n
$$
F_3
$$
\n
$$
F_4
$$
\n
$$
F_5
$$
\n
$$
F_7
$$
\n
$$
F_8
$$
\n
$$
F_9
$$
\n
$$
F_9
$$
\n
$$
F_1
$$
\n
$$
F_2
$$
\n
$$
F_3
$$
\n
$$
F_4
$$
\n
$$
F_5
$$
\n
$$
F_7
$$
\n
$$
F_8
$$
\n
$$
F_9
$$
\n
$$
F_9
$$
\n
$$
F_1
$$
\n
$$
F_2
$$
\n
$$
F_3
$$
\n
$$
F_3
$$
\n
$$
F_9
$$
\n
$$
F_1
$$
\n
$$
F_2
$$
\n
$$
F_3
$$
\n
$$
F_3
$$
\n
$$
F_7
$$
\n
$$
F_8
$$

$$
D_1(x) \ge D_2(x) \ge \dots \ge 0 \implies D_{\infty}(x) := \lim_{i \to \infty} D_i(x) \text{ exists}
$$

$$
F_1
$$
\n
$$
G = \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C}
$$
\n
$$
F_2
$$
\n
$$
G = \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C}
$$
\n
$$
F_3
$$
\n
$$
F_4
$$
\n
$$
G = \mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C}
$$
\n
$$
F_5
$$
\n
$$
F_6
$$
\n
$$
F_7
$$
\n
$$
F_8
$$
\n
$$
G = \mathbf{C} \cdot \mathbf{C}
$$
\n
$$
F_9
$$
\n
$$
F_1
$$
\n
$$
F_2
$$
\n
$$
F_3
$$
\n
$$
G = \mathbf{C} \cdot \mathbf{C}
$$
\n
$$
F_4
$$
\n
$$
G = \mathbf{C} \cdot \mathbf{C}
$$
\n
$$
F_5
$$
\n
$$
F_7
$$
\n
$$
F_8
$$
\n
$$
G = \mathbf{C} \cdot \mathbf{C}
$$
\n
$$
F_9
$$
\n
$$
F_1
$$
\n
$$
F_2
$$
\n
$$
F_3
$$
\n
$$
G = \mathbf{C} \cdot \mathbf{C}
$$
\n
$$
F_9
$$
\n
$$
F_1
$$
\n
$$
F_2
$$
\n
$$
F_3
$$
\n
$$
G = \mathbf{C} \cdot \mathbf{C}
$$
\n
$$
F_4
$$
\n
$$
G = \mathbf{C}
$$
\n
$$
F_5
$$
\n
$$
F_7
$$
\n
$$
F_8
$$
\n
$$
F_9
$$
\n
$$
F_1
$$
\n
$$
F_2
$$
\n
$$
F_3
$$
\n
$$
F_1
$$
\n
$$
F_2
$$
\n
$$
F_3
$$
\n
$$
F_4
$$
\n
$$
F_5
$$
\n

 \Rightarrow In worst-case analysis, we can assume that $D_i = D_{\infty}$ for all $i \geq 1$

Step 2: Reduction from *D*∞(*x*) **to** *γx*

$$
D_{\infty}(x) = \lim_{i \to \infty} D_i(x) \in [0, x] \quad \implies \quad \gamma := \inf_{x > 0} \frac{D_{\infty}(x)}{x} \in [0, 1]
$$

Step 2: Reduction from *D*∞(*x*) **to** *γx*

$$
D_{\infty}(x) = \lim_{i \to \infty} D_i(x) \in [0, x] \quad \implies \quad \gamma := \inf_{x > 0} \frac{D_{\infty}(x)}{x} \in [0, 1]
$$

Notation:

- \mathscr{D} -Prophet inequality: $\mathsf{ALG}^\mathscr{D}(X_1, ..., X_n) = \max(X_\tau, D_1(X_{\tau-1}), D_2(X_{\tau-2}), ...)$
- D_{∞} -Prophet inequality: $\text{ALG}^{D_{\infty}}(X_1, ..., X_n) = \max(X_{\tau}, D_{\infty}(X_{\tau-1}), D_{\infty}(X_{\tau-2}), ...)$
- γ -Prophet inequality: $\mathsf{ALG}^\gamma(X_1, ..., X_n) = \max(X_\tau, \gamma X_{\tau-1}, \gamma X_{\tau-2}, ...)$

Step 2: Reduction from *D*∞(*x*) **to** *γx*

$$
D_{\infty}(x) = \lim_{i \to \infty} D_i(x) \in [0, x] \quad \implies \quad \gamma := \inf_{x > 0} \frac{D_{\infty}(x)}{x} \in [0, 1]
$$

Notation:

- \mathscr{D} -Prophet inequality: $\mathsf{ALG}^\mathscr{D}(X_1, ..., X_n) = \max(X_\tau, D_1(X_{\tau-1}), D_2(X_{\tau-2}), ...)$
- D_{∞} -Prophet inequality: $\text{ALG}^{D_{\infty}}(X_1, ..., X_n) = \max(X_{\tau}, D_{\infty}(X_{\tau-1}), D_{\infty}(X_{\tau-2}), ...)$
- γ -Prophet inequality: $\mathsf{ALG}^\gamma(X_1, ..., X_n) = \max(X_\tau, \gamma X_{\tau-1}, \gamma X_{\tau-2}, ...)$

Theorem: Let $0 < a < b$, if $X_1,...,X_n$ have support in $\{0,a,b\}$, then for any algorithm ALG

$$
CR^{D_{\infty}}(ALG) \leq \frac{\mathbb{E}[ALG^{D_{\infty}}(X_1, ..., X_n)]}{\mathbb{E}[\max(X_1, ..., X_n)]} \leq \sup_{A: \text{algo}} \frac{\mathbb{E}[A^{\gamma}(X_1, ..., X_n)]}{\mathbb{E}[\max(X_1, ..., X_n)]}
$$

Consequence of the reduction

Let
$$
\gamma_{\mathcal{D}} := \inf_{x>0} \frac{\inf_i D_i(x)}{x} \in [0,1]
$$

Consequence of the reduction

Let
$$
\gamma_{\mathcal{D}} := \inf_{x>0} \frac{\inf_i D_i(x)}{x} \in [0,1]
$$

Upper bounds in the γ -prophet inequality, proved with random variables having a support in $\{0_,a,b\}$ remain true in the $\mathscr{D}% _{a}^{a}(A_{a})$ -prophet inequality

Consequence of the reduction

Let
$$
\gamma_{\mathcal{D}} := \inf_{x>0} \frac{\inf_i D_i(x)}{x} \in [0,1]
$$

Upper bounds in the γ -prophet inequality, proved with random variables having a support in $\{0_,a,b\}$ remain true in the $\mathscr{D}% _{a}^{a}(A_{a})$ -prophet inequality

Lower bounds in the γ -prophet inequality remain true in the $\mathscr D$ -prophet inequality. $(D_i(x) \geq D_\infty(x) \geq \gamma x)$

Main results

Let
$$
\gamma_{\mathcal{D}} := \inf_{x>0} \frac{\inf_i D_i(x)}{x} \in [0,1]
$$

Upper bound: The competitive ratio of any algorithm in the $\mathcal D$ -prophet inequality is at most $\frac{1}{\sim}$. 2 − *γ*

Lower bound: Let ALG the algorithm that select the first value exceeding θ , with $\mathbb{P}(\max(X_1, ..., X_n) \geq \theta) = \frac{1}{\gamma}$, then 1 2 − *γ*

$$
CR(ALG) = \frac{1}{2-\gamma}.
$$

Main results

Let
$$
\gamma_{\mathcal{D}} := \inf_{x>0} \frac{\inf_i D_i(x)}{x} \in [0,1]
$$

Upper bound: The competitive ratio of any algorithm in the $\mathcal D$ -prophet inequality is at most $\frac{1}{\sim}$. 2 − *γ*

Lower bound: Let ALG the algorithm that select the first value exceeding θ , with $\mathbb{P}(\max(X_1, ..., X_n) \geq \theta) = \frac{1}{\gamma}$, then 1 2 − *γ*

$$
CR(ALG) = \frac{1}{2-\gamma}.
$$

Problem solved!

Variants of the prophet inequality

Random order: (prophet secretary) The distributions $F_1,...,F_n$ are adversarial, but the values are observed in a uniformly random order

Variants of the prophet inequality

Random order: (prophet secretary) The distributions $F_1,...,F_n$ are adversarial, but the values are observed in a uniformly random order

IID model: The distributions are identical $F_1 = \ldots = F_n = F$

Variants of the prophet inequality

Random order: (prophet secretary) The distributions $F_1,...,F_n$ are adversarial, but the values are observed in a uniformly random order

IID model: The distributions are identical $F_1 = \ldots = F_n = F$

Main results

- The same reductions of the decay functions to $D_\infty(x)$ then γx remain γx true in both models (but more technical)
- Upper bounds: depending on *γ*
- Lower bounds: single threshold algorithms

Future work: in the random order and IID models

- Improve the upper bounds
- Analyse more general algorithms

