Google DeepMind

Simplified and Generalized Masked Diffusion for Discrete Data

in Shi

Kehang Han

Zhe Wang

Arnaud Doucet

Michalis K. Titsias

Why Diffusion Models for Discrete Data

• Generating discrete data with parallel sampling

Why Diffusion Models for Discrete Data

• AR models require imposing an ordering which may be unnatural for many data types

HGFGTLEHPIYKVAKQWSMVHDTTVYFSCGLHVAAHPATYVSMQAWKSTNDFPCRQHDNI TMLYHINMESFVNLEFCNFQTDDKYLEDPWARHEKYPIRKAIKWEGLPNMQRLHMLHWIN VSMDPNHGPVYCAKWDTILYMGKDGKERRTSAYMFTGVDEQHCRYEYRKFCGKHKAPKLM GRLFRITKSCWWGCCTLDNMKPDKAKACAEDMRRCRNIPVVQNFQQCGKYWKATSQDNTK RNSKCRAIEWEIFQYWINCSTVVKTFAPCMFGFQFRFHYGYNYMFWVTIKLSVYRWMPGV DRETPVHAVNIINIWSAYKMTRYWCRIQCDSYWLWSGMTWRWCRWNREQPEWLSHDDMVQ CWEGSYKLMFCGWWRHFISKSMVTLGGHKKDDGRRWMLQSTHHLHFPATINIHDDWFPHG

Challenge

Diffusion yet to match AR performance on discrete data

Gulrajani & Hashimoto (2024). Likelihood-based diffusion language models.

Masked Diffusion Models data mask data $\begin{cases} \text{w/ prob.} \frac{\alpha_s - \alpha_t}{1 - \alpha_t} p(x_0 = j | x_t), \text{ unmask to state } j \\ \text{w/ prob.} \frac{1 - \alpha_s}{1 - \alpha_t}, \text{ remain masked} \end{cases}$ time 0

MD4 Objective: Weighted Cross-Entropy Losses

Continuous-time Negative ELBO $(T \rightarrow \infty)$

$$\mathscr{L}_{\infty} = \int_{0}^{1} \frac{\alpha_{t}'}{1 - \alpha_{t}} \mathbb{E}_{q(x_{t}|x_{0})} [\delta_{x_{t},m} \cdot x_{0}^{\mathsf{T}} \log \mu_{\theta}(x_{t},t)] dt$$

Perplexity on GPT-2 Zero-Shot Eval

Size	Method	LAMBADA	WikiText2	PTB	WikiText103	IBW
Small	GPT-2 (WebText)*	45.04	42.43	138.43	41.60	75.20
	D3PM	≤ 93.47	≤ 77.28	≤ 200.82	\leq 75.16	\leq 138.92
	Plaid	≤ 57.28	≤ 51.80	≤ 142.60	≤ 50.86	\leq 91.12
	SEDD Absorb	≤ 50.92	≤ 41.84	≤ 114.24	≤ 40.62	\leq 79.29
	SEDD Absorb (reimpl.)	\leq 49.73	\leq 38.94	≤ 107.54	\leq 39.15	\leq 72.96
	MD4 (Ours)	\leq 48.43	\leq 34.94	\leq 102.26	\leq 35.90	\leq 68.10
Medium	GPT-2 (WebText)*	35.66	31.80	123.14	31.39	55.72
	SEDD Absorb	\leq 42.77	≤ 31.04	≤ 87.12	≤ 29.98	≤ 61.19
	MD4 (Ours)	\leq 44.12	\leq 25.84	\leq 66.07	\leq 25.84	<i>≤</i> 51.45

Pixel-level Image Modeling

CIFAR-10

ImageNet 64x64

Sampling

- The masking schedule controls the the quantity of simultaneously predicted tokens.
- The cosine schedule that gradually increases parallel predictions works best.

Concurrent Work

Simple and Effective Masked Diffusion Language Models

Your Absorbing Discrete Diffusion Secretly Models the Conditional Distributions of Clean Data

Subham Sekhar Sahoo Cornell Tech, NYC, USA. ssahoo@cs.cornell.edu Marianne Arriola Cornell Tech, NYC, USA. ma2238@cornell.edu

Aaron Gokaslan Cornell Tech, NYC, USA. akg87@cs.cornell.edu

Edgar Marroquin Cornell Tech, NYC, USA. emm392@cornell.edu Justin T Chiu Cornell Tech, NYC, USA. jtc257@cornell.edu

Yair Schiff

Cornell Tech, NYC, USA

yzs2@cornell.edu

Alexander Rush Cornell Tech, NYC, USA. ar459@cornell.edu Volodymyr Kuleshov Cornell Tech, NYC, USA. kuleshov@cornell.edu Jingyang Ou¹ Shen Nie¹ Kaiwen Xue¹ Fengqi Zhu¹ Jiacheng Sun² Zhenguo Li² Chongxuan Li^{1*} ¹Gaoling School of Artificial Intelligence, Renmin University of China ² Huawei Noah's Ark Lab {oujingyang, nieshen,kaiwenxue,chongxuanli}@ruc.edu.cn; fengqizhu@whu.edu.cn;{sunjiacheng1,li.zhenguo}@huawei.com;

Thanks

ImageNet 64x64 unconditional generation

Conditional text generation

skydiving is a fun sport, but it's extremely risky. You can have so many injuries one time and then one next time. There are so many ways you can hurt, so, neuroconcussions, especially from Skydiving, are continuing to rise every year Though antibacterial products are a poison, the skin needs a chemical solution that protects it from bacteria and spots that form within it that is why I always shampoo twice a day and shower three times a day.