LLM MERGING

Model Merging using Geometric Median of Task Vectors

NEURAL INFORMATION PROCESSING SYSTEMS

> AAKASH GUPTA SIDDARTH GUPTA

MODEL MERGING

- Model merging or model fusion, combines the parameters of multiple models with unique strengths into a single, unified model.
- Unlike ensemble methods, which require high memory and processing power, model merging consolidates knowledge into one streamlined model, reducing computational costs, memory usage, and latency.
- This efficient technique enhances generalization across tasks and is ideal for resource-constrained or low-latency environments, as it does not require access to the original training data or extensive computation and training.

TASK VECTOR

The vector encodes the information related to the task that the fine-tuned model learned. For example, if the fine-tuned model learns to summarize text, the task vector would represent "text summarization ability."

$$
\tau_t = \theta_t^{\rm ft} - \theta_{\rm pre}.
$$

LORA , PEFT

LORA/PEFT reduces the number of parameters that need to be updated during fine-tuning, making the process of finetuning faster and more memory-efficient, while maintaining performance on downstream tasks.

$$
W' = W + \Delta W
$$

$$
\Delta W = BA
$$

GEOMETRIC MEDIAN

The geometric median is a point in multidimensional space that minimizes the sum of distances to a set of given points.

Mathematically, given a set of points $X = \{x_1, x_2, \dots, x_n\}$ in Euclidean space \mathbb{R}^d , the geometric median M is the point that minimizes the sum of Euclidean distances to the given points:

$$
M = \arg\min_{y \in \mathbb{R}^d} \sum_{i=1}^n \|y - x_i\|
$$
 (1)

where:

- \bullet *M* is the geometric median (the point to be found).
- $||y x_i||$ denotes the Euclidean distance between point y and x_i .

METHOD

- In our approach, the fine-tuned LLM's we used had 23 encoder blocks and 23 decoder blocks, and each encoder or decoder block has LoRA $A \in \mathbb{R}^{16 \times 2048}$ and $B \in \mathbb{R}^{2048 \times 16}$
	- $\Delta W = BA$ is the corresponding task vector of a given fine-tuned LLM for a given encoder/decoder block (parameter matrix of the $W \in \mathbb{R}^{2048 \times 2048}$
	- **We flatten all these task vector matrices to a high dimensional vector** $\mathbb{R}^{1\times 4194304}$ and then find the geometric median of all these flattened **vectors treating each of these vectors as a point in multidimensional space to get a "net task vector" for that block which is finally added to the corresponding block in the pretrained base LLM after reshaping to** the original size $\mathbb{R}^{2048\times2048}$ of block's parameter.
	- We are finding the geometric median , so that our model is able to optimally perform in all the tasks.

WEISZFELD **ITERATIVE**

The Weiszfeld algorithm is an iterative method used to compute the geometric median of a set of points in multi-dimensional space.

Algorithm 1 Weiszfeld Algorithm for Minimizing $f(x) = \sum_{i=1}^{n} w_i ||x - p_i||$

Input: Points $p_i \in \mathbb{R}^d$, $i = 1, ..., n$, with optional weights $w_i > 0$. Initial guess $x^{(0)} \in \mathbb{R}^d$.

- 1: $k \leftarrow 0$
- $2:$ repeat
- if $x^{(k)} \neq p_i$ for all $i \in \{1, \ldots, n\}$ then $3:$
- Compute the weighted average: $4:$

$$
x^{(k+1)} \leftarrow \frac{\sum_{i=1}^{n} \frac{w_i}{\|x^{(k)} - p_i\|} p_i}{\sum_{i=1}^{n} \frac{w_i}{\|x^{(k)} - p_i\|}}
$$

else $5:$

- Apply a small perturbation to avoid division by zero. $6:$
- $7:$ end if

 $8:$ $k \leftarrow k+1$

9: until convergence (i.e.,
$$
||x^{(k+1)} - x^{(k)}|| < \epsilon
$$
 for a small ϵ)

Output: Geometric median $x^{(k+1)}$.

$$
\begin{array}{c}\n\text{WEISZFELD}\n\\ \n\text{ITERATIVE}\n\\ \n\min_{x} \left\{ f(x) = \sum_{i=1}^{m} \omega_i ||x - a_i|| \right\} \n\end{array}
$$

Let x^* be the optimal solution of problem (FW). If $x^* \notin A$, then

$$
\nabla f(x^*) = \sum_{i=1}^m \omega_i \frac{x^* - a_i}{\|x^* - a_i\|} = 0.
$$

The optimal solution can be expressed as:

$$
x^* = \frac{\sum_{i=1}^m \omega_i a_i / \|x^* - a_i\|}{\sum_{i=1}^m \omega_i / \|x^* - a_i\|}
$$

٠

or in operator form:

 $x^* = T(x^*),$

where the operator $T: \mathbb{R}^d \setminus A \to \mathbb{R}^d$ is defined by:

$$
T(x) := \frac{\sum_{i=1}^{m} \omega_i a_i / \|x - a_i\|}{\sum_{i=1}^{m} \omega_i / \|x - a_i\|}
$$

RESULTS

The table compares the performance of merging various number of models using two methods: GeoMed, which computes the geometric median of task vectors, and WeightAvg, a baseline method that computes the average of all task vectors.

Table 2: List of Finetuned Models Used to obtain results of table 1

Table 3: As shown in Table 2, several finetuned models were used for various tasks such as Text Classification, Question Answering, and Sentence Similarity etc.

THANKS