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Overview

▶ This study focuses on implicit augmentation techniques
to address class imbalance in Breast Cancer (BC) diag-
nosis. We evaluate nine methods using two feature sets,
deep GoogleNET, and Haralick features, across Craniocau-
dal (CC) and Mediolateral Oblique (MLO) mammogram
views. This work provides a statistical analysis recommend-
ing optimal combinations of image view, deep features, or
handcrafted features using two classifiers to enhance diag-
nostic accuracy.

Dataset Details
Table: Training and test samples are categorized as positive (Tr Pos/Ts
Pos) or negative (Tr Neg/Ts Neg) for both datasets.

Setups Tr Pos Tr Neg Ts Pos Ts Neg
SCC 98 1216 19 308
SMLO 99 1204 20 298
SCC+MLO 158 2420 39 606
WBC 170 286 42 71
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Figure: (a) Left MLO View (b) Segmentation of Left MLO image (c)
Right CC View (d) Segmentation of Right CC image.
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Figure: The workflow illustrating our comparative analysis of data-level
augmentation approaches.

Results

Figure: The Area Under the Curve (AUC) is the performance metric for
1D Convolutional Neural Network (1D-CNN) and Multilayer Perceptron
(MLP) classifiers as shown across data setups. The x-axis represents data
setups, the y-axis indicates AUC scores, and the legend highlights the
applied augmentation techniques.
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Figure: A Nemenyi Plot compares the performance of dataset setups on
the DDSM dataset across nine augmentation methods using 1D-CNN
(a) and MLP (b). Setups ranked 1 (best) to 6 (worst) within the Critical
Distance (CD) show no significant difference at α = 0.05, with D for deep
features and H for Haralick features.

Table: The STEM/Mixup combination was added to explore the diversity
of generated samples using 1D-CNN and MLP classifiers. Where D and H
are used for Deep and Haralick features respectively.

Setups 1D-CNN MLP
SCC −D STEM/Mixup STEM/Mixup
SCC −H STEM/Mixup Mixup
SMLO −D STEM/Mixup ADASYN
SMLO −H Mixup STEM
SCC+MLO −D STEM/Mixup STEM
SCC+MLO −H STEM/Mixup Mixup
WBC STEM STEM/Mixup

Conclusion
▶ This study explores data augmentation’s impact on Deep

Learning for BC diagnosis. Experiments on DDSM and
WBC datasets show that Mixup and STEM are the most ef-
fective techniques for 1D-CNN architectures. Key insights
include the effectiveness of MLP classifiers with deep fea-
tures from MLO views and the use of Haralick features for
CC views.
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