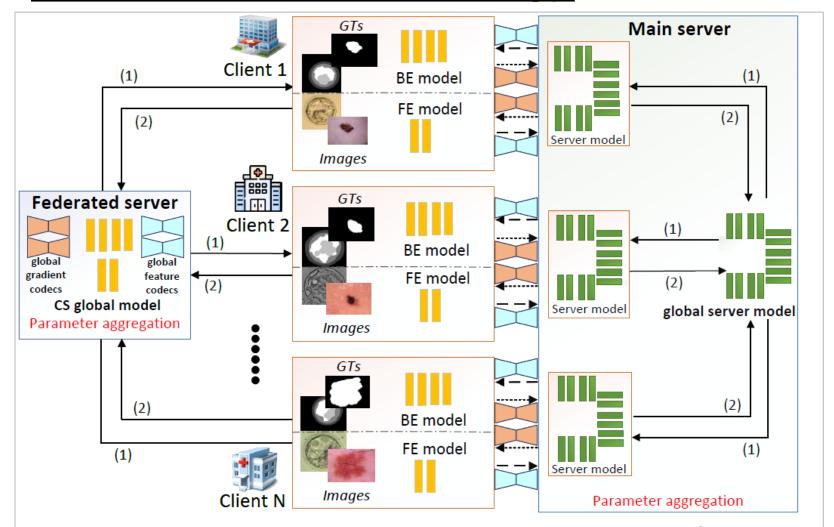
Enhancing Communication Efficiency and Robustness in Split-Federated Learning with Rate-Distortion inspired Compression

Chamani Shiranthika, Hadi Hadizadeh, Parvaneh Saeedi, Ivan V. Baji'c


Introduction

- SplitFed learning [1] → Federated Learning + Split Learning
- Communication challenges → High latency, bandwidth constraints, Synchronization overhead
- **SplitFedZip** → Employs rate-distortion inspired compression
- **SplitFedZip** → Preserves performance, reduced data transfer, enhanced communication efficiency & robustness

Contributions

- Factorized Prior (AE) [2] and Cheng_2020 [3] codecs
- FG Both features and gradients compression, F Features compression
- First rate-distortion inspired compression approach for SplitFed
- Medical image segmentation on blastocysts and skin lesions

SplitFedZip methodology

(1) Transmission of the current global model from the federated server/ main server (2) Transmission of the local model parameters from the clients

-- Features/ smashed data flow -----> Error gradients flow Feature codecs

Gradient codecs

CS: Client side FE: Front End BE: Back End

Figure 1: SplitFedZip network.

Each client's loss function:

$$L = L_r + \lambda \cdot \{L_{Dice} + L_{mse}\}$$

Loss function during FG:

$$L = \sum_{i=1,2} \left(L_r^{Si,F} + L_r^{Si,G}
ight) + \lambda \cdot \left(\sum_{i=1,2} \left(L_{mse}^{Si,F} + L_{mse}^{Si,G}
ight) + L_{Dice}
ight)$$

Loss function during F:

$$L = \sum_{i=1,2} L_r^{Si,F} + \lambda \cdot \left(\sum_{i=1,2} L_{mse}^{Si,F} + L_{Dice}\right)$$

Loss function during no compression:

 L_{Dice}

R-A curves

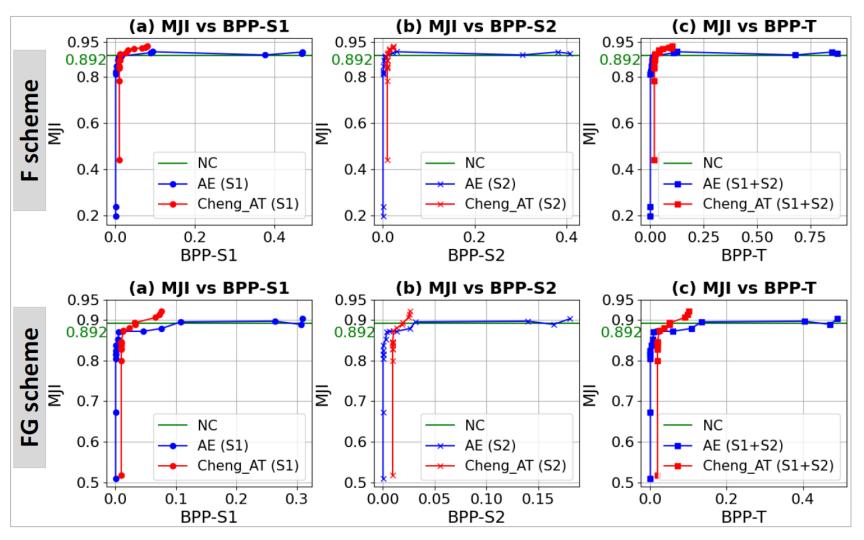


Figure 2: R-A curve for the HAM10K dataset.

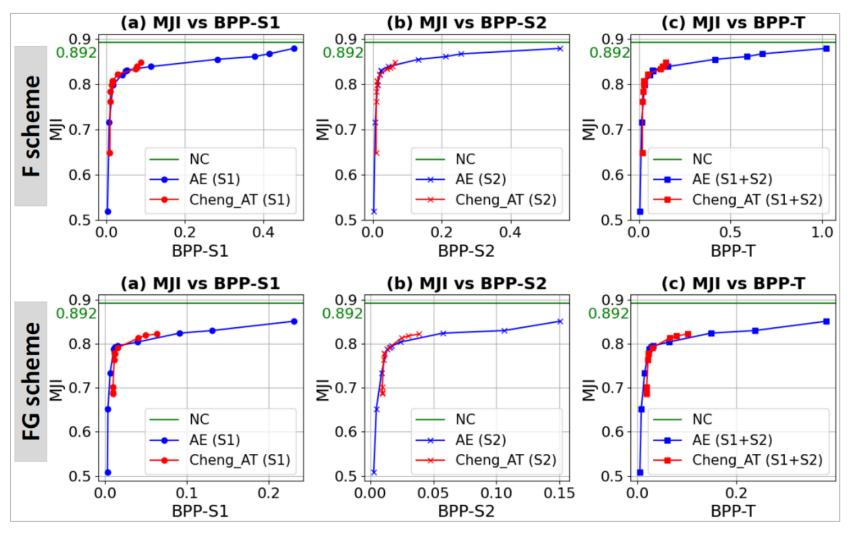
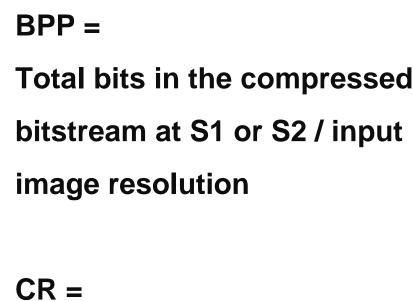



Figure 3: R-A curve for the Blastocyst dataset.

(Original feature size at S1 or S2) / (BPP-T * input image resolution)

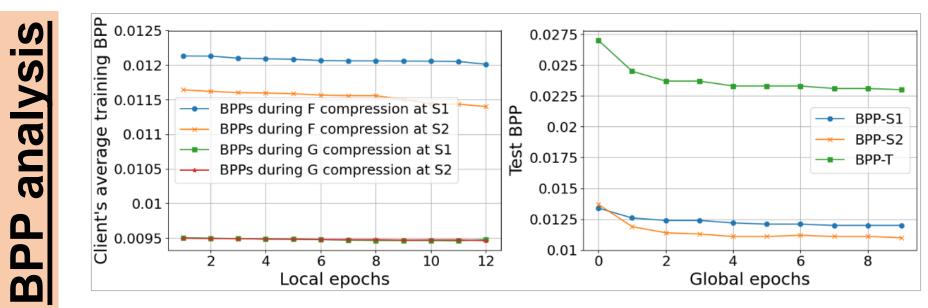


Figure 4: BPP analysis during SplitFed training for the blastocyst dataset...

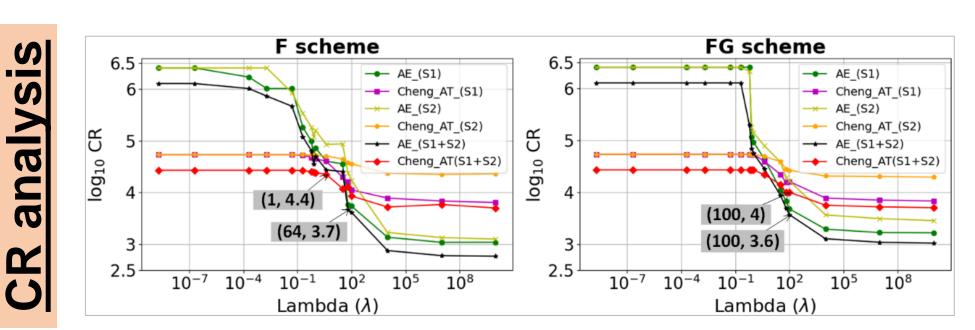


Figure 5: CR vs. λ for the HAM10K dataset.

Blastocyst Dataset

Bjøntegaard Delta (BD) analysis

Table 1: BD-MJI and BD-BPP values.

Split point	F sc	heme	FG scheme				
	BD-MJI	BD-BPP	BD-MJI	BD-BPP			
Blastocyst dataset (corresponds to Fig. 2)							
S1	0.004	-33.681	0.005	-99.195			
S2	0.007	-2.418	0.007	-14.124			
S1+S2	0.001	-26.634	0.004	-9.924			
HAM10K dataset (corresponds to Fig. 3)							
S1	0.001	-62.019	0.010	-14.190			
S2	0.001	-25.089	0.007	-26.663			
S1+S2	0.002	-71.620	0.009	-25.007			
WAvg based on testing dataset sizes of the two datasets							
S1+S2: WAvg	0.002	-68.704	0.009	-24.029			

SOTA comparison

Compared to AE in [4] → SplitFedZip offers better compression accuracy

M1 (pretrained AE used as non-trainable layers in the split network) → Two-stage training

M2 (AE trained for a few global epochs, then frozen) -> Two-phase training

Table 2: MJI and DT: AE in [4].

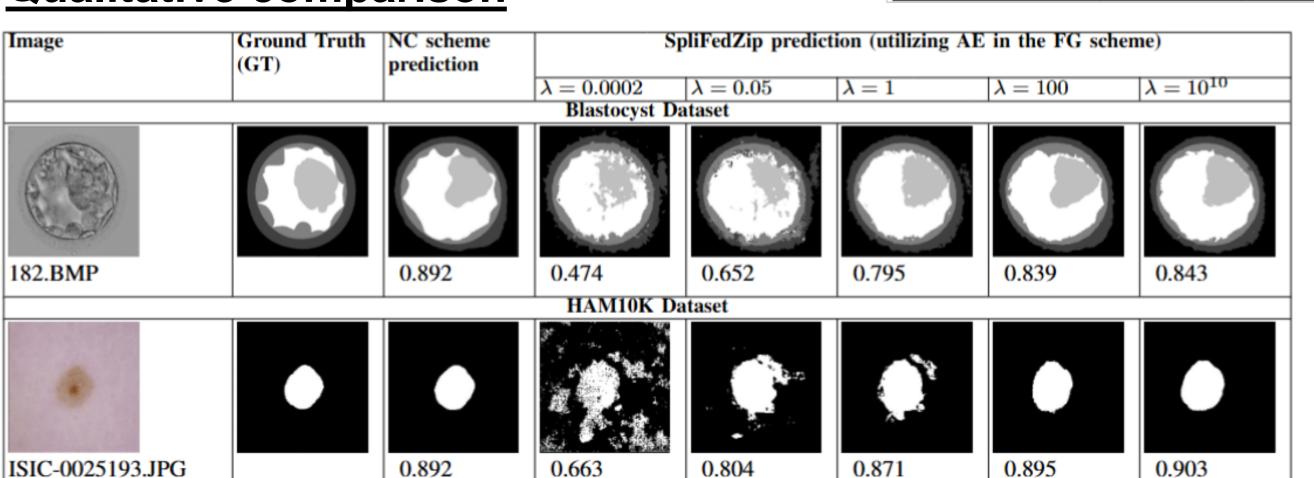

	Blastocyst Dataset				HAM10K Dataset			
gthres	M1		M2		M1		M2	
	MJI	DT	MJI	DT	MJI	DT	MJI	DT
NC	0.892	40.6	0.892	40.6	0.892	514	0.892	4.0
inf	0.797	0.32	0.475	0.32	0.839	4.0	0.802	4.0
5	0.798	0.32	0.548	0.32	0.836	4.0	0.808	4.0
3	0.799	0.32	0.717	0.32	0.835	4.0	0.865	4.0
1.5	0.800	0.32	0.789	0.32	0.873	4.0	0.860	4.0
1.0	0.799	0.32	0.787	0.32	0.876	4.0	0.860	4.0
0.8	0.800	0.32	0.796	0.39	0.874	4.0	0.860	4.0
0.5	0.801	0.32	0.790	0.63	0.838	4.0	0.876	4.0
0.25	0.799	0.32	0.817	0.63	0.841	4.0	0.873	4.0
0.2	0.799	0.32	0.807	0.63	0.868	4.0	0.869	4.1
0.15	0.798	0.32	0.800	0.63	0.869	4.0	0.876	4.1
0.10	0.798	0.41	0.812	0.63	0.844	4.0	0.879	4.3
0.08	0.800	0.52	0.808	0.63	0.823	4.1	0.870	4.4
0.05	0.795	0.63	0.816	0.63	0.828	4.2	0.883	5.0
0	0.797	0.63	0.812	0.63	0.857	8.0	0.886	8.0

Table 3: MJI and DT: SplitFedZip's AE.

HAM10K Dataset

λ	Two-stage		Two-phase		Two-stage		Two-phase	
	MJI	DT	MJI	DT	MJI	DT	MJI	DT
NC	NA	NA	NA	NA	NA	NA	NA	NA
10^{10}	0.878	1.04	0.845	0.07	0.894	0.8	0.907	0.6
100	0.869	0.5	0.847	0.04	0.898	0.3	0.899	0.12
64	0.884	0.4	0.846	0.03	0.896	0.27	0.892	0.09
32	0.877	0.4	0.823	0.03	0.893	0.06	0.882	0.04
16	0.869	0.3	0.822	0.02	0.891	0.06	0.894	0.03
4	0.806	0.1	0.805	0.009	0.894	0.02	0.868	0.02
1	0.810	0.03	0.778	0.008	0.889	0.02	0.869	0.009
0.8	0.804	0.03	0.769	0.008	0.882	0.02	0.864	0.008
0.6	0.799	0.02	0.775	0.005	0.880	0.0008	0.835	0.003
0.2	0.788	0.02	0.711	0.003	0.839	0.0004	0.831	0.002
0.05	0.755	0.018	0.624	0.003	0.834	0.0004	0.827	0.0009
0.002	0.607	0.017	0.512	0.003	0.832	0.0004	0.823	0.0005
0.0002	0.485	0.005	0.497	0.003	0.808	0.0004	0.820	0.0004

Qualitative comparison

References

[1] Thapa, C.; Arachchige, P. C. M.; Camtepe, S.; and Sun, L. 2022. "SplitFed: When Federated Learning Meets SplitLearning". In Proc. AAAI, volume 36, 8485–8493.

[2] Ball'e, J.; Minnen, D.; Singh, S.; Hwang, S. J.; and Johnston, N. 2018. "Variational image compression with a scale hyper-prior". In Proc. ICLR.

[3] Cheng, Z.; Sun, H.; Takeuchi, M.; and Katto, J. 2020. "Learned image compression with discretized gaussian mixture likelihoods and attention modules". In Proc. CVPR,7939-7948.

[4] Ayad, A.; Renner, M.; and Schmeink, A. 2021. "Improving the communication and computation efficiency of split learning for iot applications". In Proc. IEEE GLOBECOM,01-06.