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The proposed approach enhances model evaluation and informs the 
development of more refined and clinically relevant metrics especially in 
OOD settings, ultimately guiding improvements in model design. We aim 
to further improve upon OOD behaviour to realize a clinical translation.
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Varying image inputs from the autoPET machine learning challenge 
PET/CT database[2]:
● PET + CT (baseline)
● PET + CT filled with zeros 
● PET filled with zeros + CT
● CT-only  

Figure 1: Overview of nnUNet (blue) & TransUNet (blue + green).
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● Training cohort: 1014 studies from 
900 patients acquired in Tübingen.

● Test cohort: 150 studies from 2 
imaging centers  (Tübingen, Munich).
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Table 1: OOD performance in AutoPET I for fine-tuned nnUNet and trained TransUNet. 
(FN: False Negative Volume; FP: False Positive Volume; SQ: Segmentation Quality; RQ: 
Recognition Quality; PQ: Panoptic Quality.)

Test  cases
Metrics (mean values)

FN 
(ml)

FP 
(ml)

Dice 
score (%)

IoU
(%)

SQ
(%)

RQ (F1 
score)

PQ
(%)

nnUNet (epochs=1000)

(a)  PET/CT 1.24 9.5 72.2 65.0 66.6 54.7 47.4

(b) PET/CT(zeroed) 1.43 8.65 62.4 52.8 58.6 39.1 31.6

(c) PET(zeroed)/CT  30.43 126.35 23.40 15.69 24.03 3.10 2.0

(d) CT 27.95 112.85 24.5 16.5 25.0 3.10 2.0

TransUNet (epochs=125)

(c) PET(zeroed)/CT 47.26 5.20 46.0 38.0 33.6 30.0 24.6

(d) CT 69.28 4.22 35.0 30.3 25.1 24.0 22.0

Figure 3: Out-of-domain behavior for lesion segmentation of nnUNet and TransUNet 
when trained and inferred with varying imaging modality inputs.

Volume rate and dice distributions 

Figure 4: Volume Rate-Dice scatter plot and gender-based dice distributions for 
TransUNet.

Image segmentation models have shown remarkable success across 
various medical imaging applications[1]. However, their transition to 
oncological Positron Emission Tomography/Computer Tomography 
(PET/CT) imaging poses significant challenges, particularly when 
handling out-of-domain data, which impact the models' robustness 
and generalizability.

Figure 5: Axial image slice visualization showing the ground truth mask (red) and the 
predicted mask (green).
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Figure 2: Volume Rate illustration.
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