
Before analysis, the dataset was preprocessing to ensure it was clean, consistent, and suitable for training the deep 

learning model. Exploratory Data Analysis (EDA) revealed no significant imbalance in the target variable, confirming 

a well-distributed dataset. However, certain issues required intervention. For instance, the "Fasting Blood Sugar" 

feature was excluded due to limited variability, as 75% of its values were zero. Additionally, medically invalid zero 

values in "Cholesterol" and "Resting Blood Pressure" were replaced with their median values, while duplicate entries 

were removed to maintain data integrity.

To prepare the data for modeling, numerical features were normalized using RobustScaler to mitigate the influence of 

outliers. Categorical variables, such as "Chest Pain Type," were pre-encoded, and their consistency was verified. 

Finally, the dataset was split into training (70%) and testing (30%) subsets, with 20% of the training data further 

allocated for validation. These preprocessing steps ensured the dataset was optimized for robust and reliable model 

performance.

Fig. 3     An overview of the Distribution of classes in the 
Dataset 

Optimization is at the heart of deep learning, guiding neural networks to achieve optimal predictive
performance by minimizing the loss function. This process involves iteratively adjusting model
parameters 𝜃  through gradient-based updates.

In summary, our experiments demonstrate that Adamax is the most effective

optimizer for this heart disease prediction task. It is stable and achieves a high

AUC of 0.90, precision of 0.863, and recall of 0.885 after hyper parameter

tunning. These findings underscore the importance of careful selection of

optimizers for healthcare-related and machine learning tasks.

Future Work

Future research should explore the role of neural network architectures in

influencing optimizer performance, such as their interactions with deeper layers

or attention mechanisms. Additionally, future work can focus on developing

novel optimizers that balance convergence speed and stability without trade-

offs. Emphasis should also be placed on creating efficient techniques for

selecting the most suitable optimizers for specific deep learning models,

ensuring optimal performance across diverse tasks.

.

TABLE 1   Showing the results of the performance of each optimizer
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• Adaptive Moment Estimation (Adam)

• Adam with Decoupled Weight Decay

Regularization (AdamW)

• Adaptive Moment Estimation Max (Adamax)

• Adaptive Moment Estimation with Stabilized

Updates (AMSGrad)

• Root Mean Square Propagation (RMSprop)

• Adaptive Gradient Algorithm (Adagrad)

• Adaptive Delta Update (Adadelta)

• Stochastic Gradient Descent (SGD) Stochastic

• Stochastic Gradient Descent with Nesterov Accelerated

Momentum

• Nesterov-accelerated Adaptive Moment Estimation

(Nadam)

Mathematically, the gradient-based Optimization Process
can be expressed as:

𝜃௧ାଵ = 𝜃௧ − 𝜂∇ఏ𝐽(𝜃)
Where:
𝜃௧ is the model parameter at step t
𝜂 is the learning rate,
𝛻ఏ𝐽 𝜃  is the gradient of the loss function 𝐽 𝜃 wrt to the
parameters.

Heart disease prediction has been a significant area of research, with numerous studies leveraging deep

learning and other machine learning techniques to improve diagnosis and risk prediction. Parmar (2020)

proposed a heart disease prediction model using the UCI Heart Disease dataset and demonstrated the

effectiveness of Talos hyperparameter optimization in enhancing model performance. Similarly, García-Ordás

et al. (2023) utilized deep learning methods with feature augmentation, achieving a 4.4% improvement over

state-of-the-art approaches and attaining a precision of 90%. These studies underscore the potential of deep

learning in advancing heart disease prediction. However, recent works have primarily focused on model

architectures and feature engineering, overlooking the role of optimization algorithms. Our work addresses this

gap by systematically analyzing the performance of various optimizers, highlighting their impact on

convergence speed, stability, and overall model performance.

Introduction
Heart disease, a leading global cause of death, necessitates effective predictive models to enable early

diagnosis and targeted prevention. While deep learning models have demonstrated significant potential in

heart disease prediction, the critical role of optimizers, a key component that directly affect model

performance, convergence, and generalization remains underexplored. This work systematically evaluates

the performance of ten widely-used optimizers on a heart disease dataset, using metrics such as

convergence speed, stability, and other Machine learning metric such as AUC, precision, recall. By

addressing this gap, we aim to advance the understanding of optimizer selection and uncover the trade-offs

involved, thereby offering actionable insights to improve the robustness and reliability of deep learning in

healthcare.

Related Work

Optimization Algorithms

Heart Disease Dataset

Experiments and Results

Conclusion and Area For Further Studies

Methodology

The dataset for this study, sourced from a public Kaggle repository, comprises 1,190 

patient records and includes 12 features representing key demographic, clinical, and 

lifestyle factors related to heart disease. The target variable is binary, indicating the 

presence (1) or absence (0) of heart disease. Notable features include age, sex, chest 

pain type, resting blood pressure, cholesterol levels, and maximum heart rate.

While the foundational idea remains consistent, optimizers vary in how they handle learning rates, momentum,
and gradient accumulation, e.g., SGD (Stochastic Gradient Descent) uses a fixed learning rate and stochastic
updates for faster computation. While optimization algorithms play a pivotal role in balancing faster convergence
and generalization of deep learning models, certain factors influence the choice of optimizers in a neural network
training pipeline, such as the size and structure of the dataset involved. In this work, we evaluate the 10 different
optimizers stated below in terms of:
• Convergence Speed: The number of epochs required to minimize the training loss.
• Stability: The standard deviation of the loss across training epochs
• Predictive Performance: Assessed through metrics like AUC-ROC, precision, and recall.
• Generalization Ability: The model's performance on unseen test data, balancing underfitting and overfitting.

Optimizers

The methodology involved investigates the application of a Deep Neural Network (DNN) in predicting heart disease,
with a focus on comparing the performance of ten optimizers: Adam, AdamW, Adamax, Nadam, AMSGrad, SGD,
SGD with Nesterov Momentum, Adagrad, Adadelta, and RMSprop. The training was carried out in steps structured
as follows:

1. DNN Architecture:
• The model includes an input layer, six fully connected hidden layers with ReLU activation, and a sigmoid-

activated output layer for binary classification.
• Dropout regularization is applied in later stages to reduce overfitting.

2. Training Procedure: The model is trained for up to 50 epochs using binary cross-entropy loss function and two
training phases are implemented:

• Phase 1: Initial evaluation of optimizers without hyperparameter tuning to assess raw performance.
• Phase 2: The best optimizer from Phase 1 undergoes additional training with dropout, hyperparameter

tuning and early stopping to improve generalization.

3. Evaluation Metrics: The performance of the optimizers were evaluated using the following metrics
• Convergence Speed: Number of epochs required for the training loss to stabilize.
• Stability: Fluctuations in validation loss during training. (evaluated based on the standard deviation of the

validation loss
• Performance: Classification metrics including precision, recall, and Area Under the Curve (AUC).

4. Selection and Refinement:
• The optimizer achieving the best balance of speed, stability, and predictive accuracy is selected for

hyperparameter tuning to further improve performance.

Fig. 4     An overview of the DNN Architecture

Final AUCFinal RecallFinal

Precision

Stability

(Validation

Loss Std Dev)

Convergence

Epoch

Final Validation

Loss

Final Training

Loss

Optimizer

0.82350.77330.74360.056848.00000.54640.3686SGD

0.86800.89330.76130.124710.00000.89740.0977ADAM

0.84140.86670.73030.111710.00000.80410.1675RMSProp

0.73580.86670.58590.002449.00000.68690.6835Adagrad

0.43010.40000.39470.000149.00000.69440.6945Adadelta

0.87770.85330.7901 0.028817.00000.52300.2394Adamax

0.85390.88000.7500 0.096016.00000.88990.0878Nadam

0.85560.89330.76140.14073.00000.95740.1192AMSGrad

0.84120.8667 0.7386 0.18468.00001.06000.1061AdamW

0.8297 0.76000.71250.047047.00000.55640.3980SGD

Nesterov

Fig. 2     A sample view of the heart

Fid 1. Illustration of optimization

The experiment highlighted several key insights into the performance of different optimizers for training a

deep neural network (DNN) using a heart disease dataset. The primary aspects analyzed include

convergence speed, stability, and final performance metrics.

1. Convergence Speed: Adam, RMSProp AMSGrad, and AdamW achieved the fastest convergence,

requiring only 3-10 epochs to reach optimal performance.

2. Stability: Adagrad ,Adadelta and Adamax exhibited the most stable training, indicating minimal

fluctuation during training.

3. Final Performance Metrics: In terms of precision, Adamax performed the best, with 0.79 precision.

Final recall was highest for Adam and AMSGrad, indicating strong performance in identifying positive

instances. Final AUC scores showed a similar trend, with Adamax leading.

- Trade-off between Convergence Speed and Stability

The results demonstrate a clear trade-off: faster optimizers like Adam, AMSGrad and AdamW offer quick

convergence but at the cost of stability, while Adagrad and Adadelta prioritize stability, resulting in slower

convergence. Adamax is seen to be the most effective optimizer for this task as it balances

performance across metrics.

Fig. 5     An overview of Convergence of Optimizers Fig. 6     Stability Performance of Optimizers


