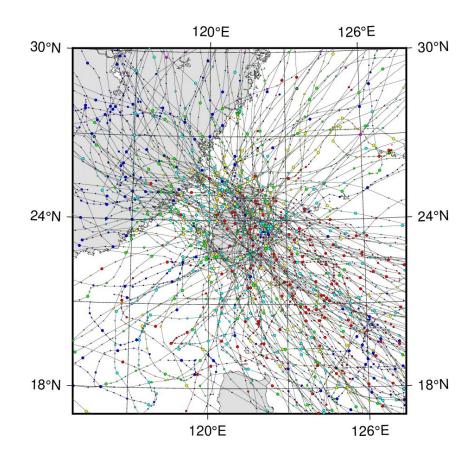
IMPERIAL

Estimating Atmospheric Variables from Digital Typhoon Satellite Images via Conditional Denoising Diffusion Models

Zhangyue Ling Pritthijit Nath César Quilodrán-Casas

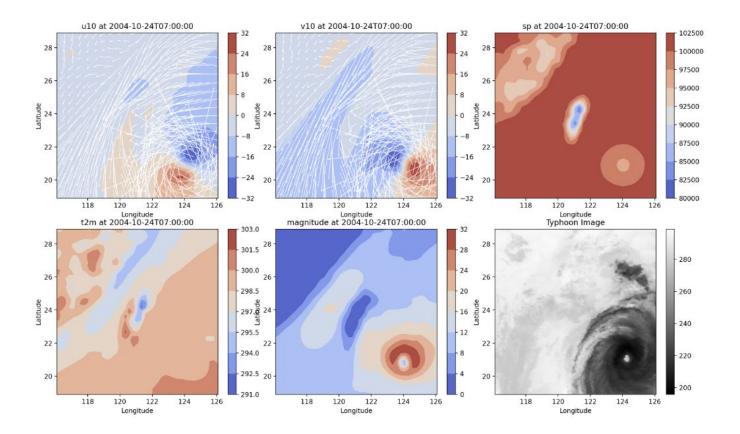
Introduction Motivations



- 1. Typhoons have a significant impact on humans and society.
- 2. ML evolves rapidly, enabling systems to learn from data.
- 3. ML boosts typhoon prediction accuracy and efficiency.
- 4. Diffusion models enhance ML's weather prediction abilities.

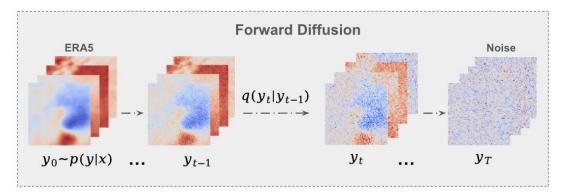
Introduction Data

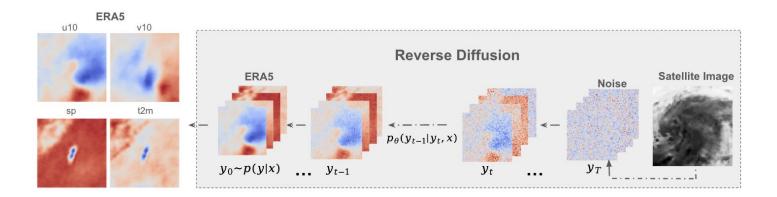
- Digital Typhoon (DT): The largest typhoon satellite image dataset covering the Western North Pacific region from 1978 to 2022.
- ERA5: The fifth generation ECMWF reanalysis atmospheric data for the global climate from 1940 onwards.



http://agora.ex.nii.ac.jp/digital-typhoon/index.html.en

Methods Conditional Denoising Diffusion Models





Stage	Input	Condition	Output
Training	Noisy ERA5 data (y_t)	Satellite Image DT (x)	Clean ERA5 data (y ₀)
Inference	Random noise (y_T)	Satellite Image DT (x)	Clean ERA5 data (y ₀)

Methods Conditional Denoising Diffusion Models

Algorithm 1 Training a denoising model $f_{\theta}^{[1]}$

Input: Noisy data y_t , condition x, initial parameters θ **Output:** Cleaned data y_0 **repeat** $(x, y_0) \sim p(x, y)$ $\gamma \sim p(\gamma)$ $\epsilon \sim \mathcal{N}(0, I)$ Take a gradient descent step on

$$\nabla_{\theta} \| f_{\theta}(x, \sqrt{\gamma}y_0 + \sqrt{1 - \gamma\epsilon}, \gamma) - \epsilon \|_{p}^{p}$$

until converged

^[1]Chitwan Saharia et al.: Palette: Image-to-image diffusion models, in: ACM SIGGRAPH 2022 conference proceedings, 2022, pp. 1–10

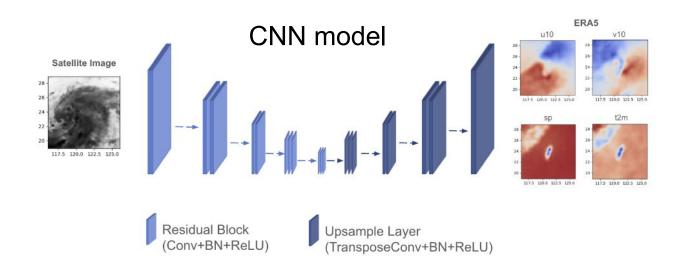
Methods

Conditional Denoising Diffusion Models

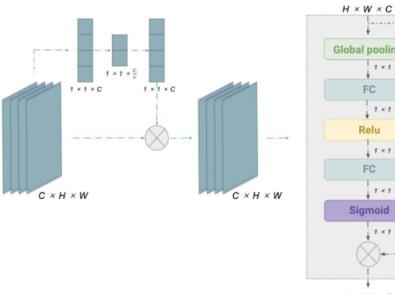
```
Algorithm 2 Inference in T iterative refinement steps<sup>[1]</sup>
Input: Random noise y_T, Satellite Image DT (x)
Output: Clean ERA5 data (y_0)
y_T \sim \mathcal{N}(0, I)
for t = T, \ldots, 1 do
     if t > 1 then
          z \sim \mathcal{N}(0, I)
     else
          z = 0
     end if
     y_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left( y_t - \frac{1 - \alpha_t}{\sqrt{1 - \gamma_t}} f_\theta(x, y_t, \gamma_t) \right) + \sqrt{1 - \alpha_t} z
end for
return y<sub>0</sub>
```

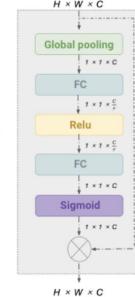
^[1]Saharia et al.: Palette: Image-to-image diffusion models (see n. [1])

Methods Baselines

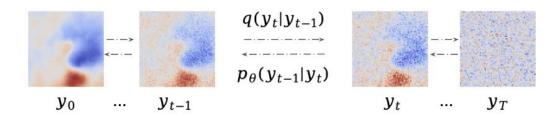


SENet

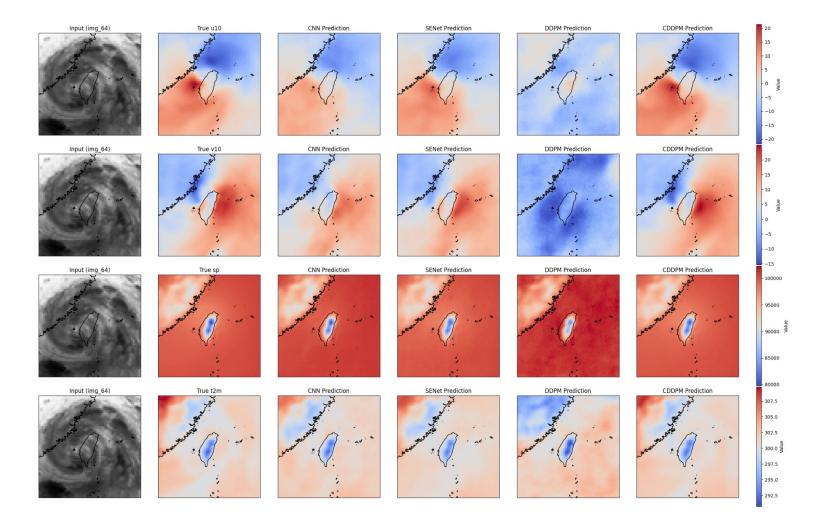




Denoising Diffusion Model



Results Visual Results

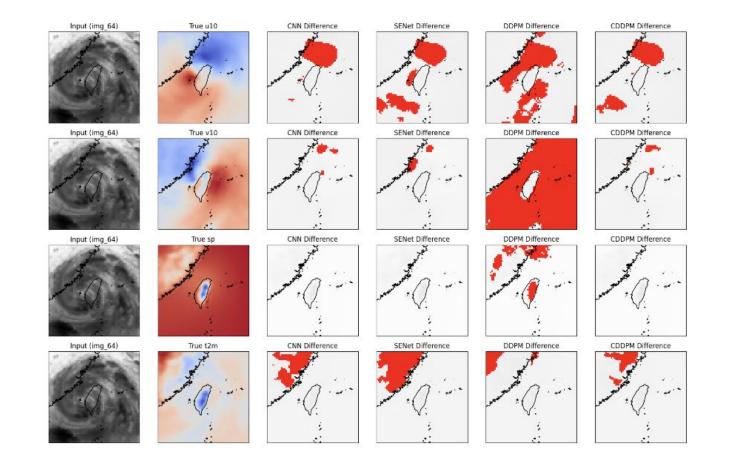


Results Performance Metrics

Model	Variable	KL-Div \downarrow	$\textbf{RMSE}\downarrow$	$\mathbf{MAE}\downarrow$	PSNR ↑	SSIM ↑	FID \downarrow	LPIPS \downarrow
CNN	u10	0.003	0.039	0.029	29.441	0.886	0.068	146.522
	v10	0.004	0.043	0.032	28.955	0.872	0.064	135.013
	t2m	0.000	0.024	0.021	33.529	0.991	0.004	27.874
	sp	0.003	0.039	0.029	29.741	0.913	0.024	149.301
	Average	0.003	0.036	0.028	30.417	0.916	0.040	114.678
SENet	u10	0.004	0.041	0.031	28.594	0.883	0.069	170.500
	v10	0.004	0.044	0.034	28.305	0.869	0.063	148.516
	t2m	0.000	0.014	0.012	38.101	0.991	0.004	41.946
	sp	0.003	0.041	0.029	29.404	0.916	0.025	135.948
	Average	0.003	0.035	0.026	31.101	0.915	0.040	124.227
DDPM	u10	0.018	0.099	0.077	20.493	0.670	0.131	283.677
	v10	0.023	0.138	0.114	17.655	0.608	0.159	263.575
	t2m	0.001	0.054	0.049	26.045	0.938	0.010	169.873
	sp	0.008	0.076	0.057	23.117	0.803	0.053	187.600
	Average	0.012	0.092	0.074	21.828	0.755	0.088	226.181
CDDPM	u10	0.004	0.037	0.027	30.973	0.900	0.052	85.518
	v10	0.004	0.041	0.031	30.199	0.891	0.051	91.219
	t2m	0.000	0.013	0.011	39.751	0.995	0.003	12.820
	sp	0.003	0.039	0.028	30.305	0.929	0.024	76.502
	Average	0.003	0.032	0.024	32.807	0.929	0.032	66.514

Model	u10	v10	t2m	sp	Average
CNN	149.539	222.422	4.865	197.252	143.520
SENet	151.089	234.270	0.887	214.000	150.061
DDPM	1128.631	1829.025	219.908	568.504	936.517
CDDPM	181.326	225.301	1.684	205.004	153.329

Results Pixel Difference

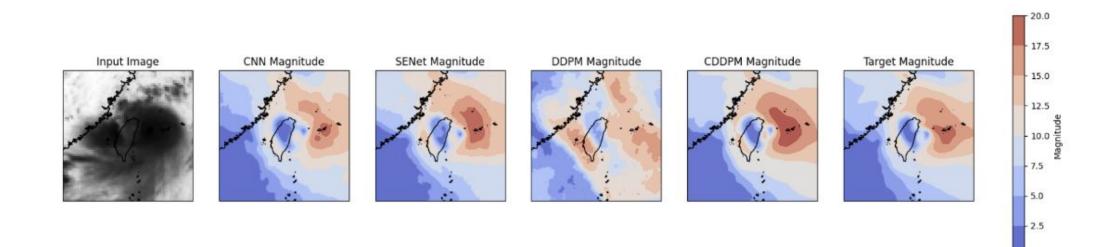


https://github.com/dmtrKovalenko/odiff

Results Magnitude Prediction

The magnitude is calculated by:

$$M = \sqrt{u_{10}^2 + v_{10}^2}$$



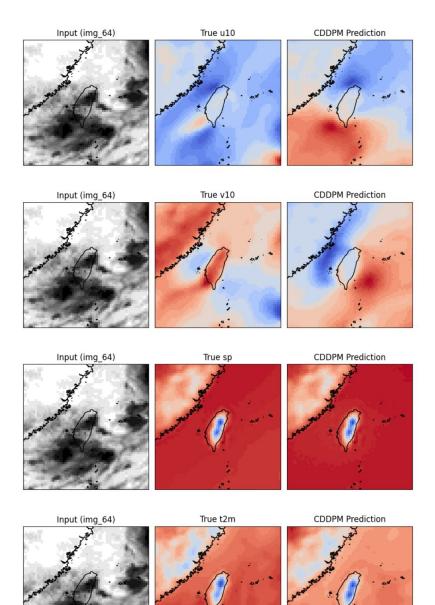
0.0

Results

,

Case study: Typhoon Muifa September 2022 Category 3 (170 km/h sustained winds)

Time	Predicted	СМА	JMA	КМА
2022-09-10 12:00:00	1005	955	965	970
2022-09-10 18:00:00	1003	950	960	960
2022-09-11 09:00:00	999	940	950	953
2022-09-11 21:00:00	994	948	965	953
2022-09-12 00:00:00	997	955	965	955
2022-09-12 21:00:00	995	958	965	960
2022-09-13 06:00:00	1003	955	955	955
2022-09-14 00:00:00	1006	955	955	955
2022-09-14 03:00:00	1005	945	955	955
2022-09-14 06:00:00	1002	945	955	955



Conclusion Key Takeways

- 1. **Development of a Customised Typhoon Dataset:** Match the DT and ERA5 meteorological data for any given region.
- 2. Advancement in the Use of CDDPM: Demonstrate CDDPM to consistently outperformed other three models across multiple reanalysis variables.
- 3. **Providing Supplementary Meteorological Data:** Demonstrate the ability to generate additional high-quality reanalysis data from satellite images, which can be used both for forecasting and to fill in gaps in existing reanalysis datasets.
- 4. **Ability of Multi-Variable Prediction:** The ability to predict multiple meteorological variables simultaneously, including u10, v10, t2m, sp.

Due to the current limitations faced, a few areas that can be researched in the future include:

- 1. More case studies
- 2. Consider Temporal Dynamic
- 3. Explore Multimodal Models
- 4. Explore Downscaling Applications

IMPERIAL

UNIVERSITY OF CAMBRIDGE

THANKS!

Ling, Z. (2024). Estimating Atmospheric Variables from Digital Typhoon Satellite Images via Conditional Denoising Diffusion Models. arXiv preprint arXiv:2409.07961