NeurIPS 2024 Workshop on Tackling Climate Change with Machine Learning

Multi-scale Decomposition of Sea Surface Height Snapshots using Machine Learning

Jingwen Lyu^{1*}, Yue Wang^{1*}, Christian Pedersen², Spencer Jones³, Dhruv Balwada¹

¹Columbia University, ²New York University, ³Texas A&M University *Equal contribution

Ocean's Role in Climate Change

Climate Impact:

● 93% of Earth's excess heat storage ● 30% of CO₂ absorption ● Major climate regulator

Our Task:

Accurately **decompose SSH snapshots** to understand ocean circulation patterns, enabling:

• Better climate predictions • Improved carbon uptake estimates • Enhanced climate model validation

Satellite Revolution

From Traditional Satellite to SWOT

New Challenge:

Longer repeat time (21 days) requires new methods for analyzing single snapshots

Decomposing SSH

SSH = BM + UBM

Balanced Motion (BM)

- Large-scale circulation
- Slow evolution
- Critical for climate

Challenge: How to seperate BM & UBM from a single SSH snapshot?

Challange: A Multi-Scale Problem

Signal overlap
 BM/UBM coexist at
 SWOT scales
 Power law decay
 PSD decays exponentially

with wavenumber

Current Solution: Gradient-Enhanced U-Net

A Step Forward, But Not Enough

State-of-the-Art Approach

U-Net + Gradient Loss

 $\mathcal{L}(\eta_{\text{UB}}, \tilde{\eta}_{\text{UB}}) = \|\eta_{\text{UB}} - \tilde{\eta}_{\text{UB}}\|^2 + \alpha \|\nabla \eta_{\text{UB}} - \nabla \tilde{\eta}_{\text{UB}}\|^2$ a: gradient loss weight (requires tuning)

! Key Limitations

- Heavy computational overhead
- Sensitive to α hyperparameter

tuning

High-frequency noise in prediction

Q Required: A More Fundamental Solution

- 1 Self-adaptive framework that eliminates gradient regularization tuning
- 2 Enhanced spectral fidelity at high wavenumbers without noise artifacts

ZCA Whitening: A Fundamental Solution

ZCA Core Process

Feature Decorrelation

Separate features across different spatial scales

- 2 Power Normalization Normalize power across all frequencies
- 3 Spatial Recovery Return to original coordinate space

Key Advantages

Enhanced Feature Detection

Reveals previously ignored small-scale features

Improved Separation

Clear BM/UBM distinction at all scales

Simplified Training

Standard MSE loss becomes effective

Innovation: ZCA transforms multi-scale learning problem into standard learning task

ZCA Whitening: Mathematical Formula

1. Data Preprocessing

1 Input Matrix

 $X_{\eta_{\mathrm{UB}}} \in \mathbb{R}^{n \times d}$ n: number of samples d: 108 imes 108 (spatial dimensions)

2 Center Data

 $\begin{array}{l} X^c_{\eta_{\rm UB}} = X_{\eta_{\rm UB}} - \mu_{\eta_{\rm UB}} \\ \text{μ: mean across UBM samples} \end{array}$

3 Compute Covariance $\Sigma = \frac{1}{n-1} (X_{\eta_{\text{UB}}}^c)^T X_{\eta_{\text{UB}}}^c$ Captures feature relationships

Key Properties

Spectral Equalization

Flat power distribution across all wavenumbers

2. ZCA Transform

1 Eigendecomposition $\Sigma = U\Lambda U^T$

U: eigenvectors Λ: diagonal eigenvalue matrix

2 Whitening Matrix

 $W_{\rm ZCA} = U(\Lambda + \epsilon I)^{-1/2}U^T$ ϵ : small constant for numerical stability

3 Apply Transform $X_{\text{ZCA}} = X_{\eta_{\text{UB}}}^c W_{\text{ZCA}}$ Final whitened representation

Decorrelation

 $Cov(X_ZCA) \approx I$ Features become statistically independent

Invertibility

Exists analytical inverse transformation

ZCA Whitening: Effect Visualization

Original UBM

- Large-scale features dominate
- **PSD**: Steep power decay
- Amplitude scale: O(10⁻²)

After ZCA Whitening

UBM (ZCA Whitened)

- Small-scale features visible
- **PSD**: Flatter power distribution
- Amplitude scale: O(10⁰)

Data Augmentation: Solution for Data-Efficiency

Maximizing Learning from Limited Ocean Data

- 4 orientations per sample
- Preserves physical relationships
- Rotation-invariant ocean dynamics

Synthetic Sample Generation

UBM-

UBM(Whitened)

Pure BM Samples(η_BM, 0)Large-scale circulation patternsPure UBM Samples

(η_UBM , $\eta_UBM_whitehed$)

Small-scale wave patterns

Training Enhancement

Original Dataset **24,000**

training samples

After Augmentation **144,000** training samples

Improvement 6 X

Key Benefits:

- ↑ Model robustness
- ↑ Feature recognition
- ↑ Generalization

Our Approach Overview

Key Innovations

1 ZCA Whitening

Enhances high frequency information capture

2 Data Augmentation

Mitigates limited training samples

3 U-Net

Multi-scale feature processing

Dataset: LLC4320 Ocean Simulation

High-Resolution Global Ocean Model for SSH Decomposition

Dataset Overview

Temporal Coverage

70 daily snapshots (Sept-Nov 2011)

Spatial Coverage

Agulhas retroflection region (15° W-29° E, 27° S-57° S)

Resolution

Temporal: 1 Day Spatial: ~2km

Results: Visual Comparison

Model Performance Across Different Methods

Balanced Motion (BM)

 Preserves large-scale features without over-smoothing

Unbalanced Motion (UBM)

• Better recovery of **fine-scale**

structures

Results: Spectral Analysis

Low Wavenumbers

 All methods perform well for largescale features

High Wavenumbers

• AugZCA-UNet maintains accuracy

at small scales

Results: Performance Metrics

Quantitative Analysis of Model Performance

Table 1: Pixel-wise Absolute Error Distribution Measures for $\hat{\eta}_{\rm B}$ (×10⁻²) and $|\nabla \hat{\eta}_{\rm B}|$ (×10⁻³)

	Measures	GF	GL-UNet					Aug-UNet	ZCA-UNet	AugZCA-UNet
			$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$	$\alpha = 5$	$\alpha = 10$			8
$\hat{\eta}_{ m B}$	Median P95 (95%)	$\begin{array}{c} 0.406 \\ 1.68 \end{array}$	$\begin{array}{c} 0.404 \\ 1.52 \end{array}$	$\begin{array}{c} 0.420 \\ 1.49 \end{array}$	$\begin{array}{c} 0.397 \\ 1.48 \end{array}$	$\begin{array}{c} 0.398 \\ 1.51 \end{array}$	$\begin{array}{c} 0.406 \\ 1.53 \end{array}$	$\begin{array}{c} 0.384\\ 1.50\end{array}$	$ \begin{array}{r} 0.393 \\ 1.52 \end{array} $	0.372 1.40
$ \nabla \hat{\eta}_{\rm B} $	Median P95 (95%)	$0.505 \\ 2.20$	$\begin{array}{c} 0.464 \\ 1.80 \end{array}$	$\begin{array}{c} 0.447 \\ 1.70 \end{array}$	$0.450 \\ 1.72$	$\begin{array}{c} 0.450 \\ 1.74 \end{array}$	$\begin{array}{c} 0.453 \\ 1.75 \end{array}$	$\begin{array}{c} 0.460 \\ 1.78 \end{array}$	$\begin{array}{c} 0.450\\ 1.71\end{array}$	0.427 1.64

Key Advantages

- **No** gradient loss tuning needed
- Consistent performance across scales
- Lower error in both BM and gradients

Conclusion

Key Contributions

- AugZCA-UNet: Superior multiscale decomposition without gradient tuning
- ZCA whitening enables consistent cross-scale performance
- Effective processing of SWOT satellite data

Future Work

- Address ZCA memory scaling for larger images
- Investigate transfer learning for generalization

Incorporate physical constraints in ML frameworks