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Motivation

● Global warming has caused serious damage to our environment.

● Accelerated loss of ice from Greenland and Antarctica

● Considerable influence on sea level rise and altering ocean 

currents

● Leading to the flooding of the coastal regions and putting 

millions of people around the world at risk
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● The Intergovernmental Panel on Climate Change estimates that the sea 

level could increase by 26–98cm by the end of this century. 

● This large range in predicted SLR can be partially attributed to an 

incomplete understanding of bed topography, snow accumulation, and 

ice dynamics.

● Precise calculation of ice thickness is very important for sea level and 

flood monitoring. 

Motivation
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Tracking the internal layers of ice sheet

• Tracking the internal layers of an ice sheet is 
important for calculating surface mass balance

• This helps in extrapolating ice age from 
subsurface measurements and inferring 
otherwise difficult-to-observe ice dynamic 
processes

• A precise understanding of the spatiotemporal 
variability of snow accumulation in the 
Greenland ice sheet is important to reducing 
the uncertainties in current climate model 
predictions and future sea level rise.
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Traditional techniques

● Capturing ice layer thickness is 

difficult

● Generally done by gathering ice cores

• Expensive

• Hard to gather

• Cover a small area

• Limited in depth

• Invasive
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Airborne Radar

• Airborne radar has become a popular method of 

gathering thickness measurements

• Echograms are very noisy

• Ice layer borders are difficult to distinguish

• Tracking englacial ice layers is difficult because 

of the large number of layers, their close 

proximity to each other, and their common 

discontinuities.

• The number, thickness, and curvature of layers 

can vary across an ice sheet and are not 

consistent, unlike the bedrock which is present 

throughout

Starr,  C. (2017). Greenland Ice Sheet Stratigraphy. NASA's Scientific Visualization Studio. Retrieved from 

https://svs.gsfc.nasa.gov/4249.
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Snow Radar
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Spatial plot of dataset flight lines and neighboring ice cores. Flight lines in Blue are the training 

data while those in Red (L1), Green (L2), and Yellow (L3) are the test data. 
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Previous works

image                   🡪 result         🡪 nms 🡪 🡪 ground truth

DL Mode                post-process                  get measures
(non maximal suppression)            (OIS, ODS, F-measure)                

Rahnemoonfar, M., Yari, M., Paden, J., Koenig, L., & Ibikunle, O. 

(2021). Deep multi-scale learning for automatic tracking of internal 
layers of ice in radar data. Journal of Glaciology, 67(261), 39-48. 

doi:10.1017/jog.2020.80

Input Image Predicted Output Converted to Layers Thickness Prediction

Varshney, D.; Rahnemoonfar, M.; Yari, M.; Paden, J.; Ibikunle, O.; Li, J. Deep 

Learning on Airborne Radar Echograms for Tracing Snow Accumulation Layers of 
the Greenland Ice Sheet. Remote Sens. 2021, 13, 2707. 

https://doi.org/10.3390/rs13142707
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Previous works

D. Varshney, O. Ibikunle, J. Paden and M. Rahnemoonfar, 

"Learning Snow Layer Thickness Through Physics Defined 

Labels," IGARSS 2022

Yari, M., Ibikunle, O*., Varshney, D.*, Paden, J., Rahnemoonfar, M., Airborne 
Ice Penetrating Radar Data Simulation with Deep Learning and Physics-
driven Methods", IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 2021
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Previous works
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Graph Convolutional Networks

• Is it possible to predict the 

thickness of deep ice layers 

given the thickness of shallow 

ice layers?

• Each echogram is converted to 

a series of temporal graphs

• Each ice layer becomes one 

graph

• Each column of pixels becomes 

one node in each graph
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Each node always has three base features:

1. Latitude

2. Longitude

3. Ice layer thickness

Physical features from MAR

1. Snow mass balance

2. Surface temperature

3. Meltwater refreezing

4. Height change due to melt

5. Amount of snowpack
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Graph Convolutional neural networks
B. Zalatan and M. Rahnemoonfar, "Recurrent Graph 

Convolutional Networks for Spatiotemporal 
Prediction of Snow Accumulation Using Airborne 
Radar," 2023 IEEE Radar Conference 

(RadarConf23), 2023

B. Zalatan and M. Rahnemoonfar, "Prediction of deep 

ice layer thickness using adaptive recurrent graph 
neural networks," 2023 IEEE Conference on Image 
Processing (ICIP23), 2023

B. Zalatan and M. Rahnemoonfar, "Prediction of 

Annual Snow Accumulation using a Recurrent 
Graph Convolutional Approach," IGARSS 2023

M. Rahnemoonfar and B. Zalatan, "Physics-

informed Machine Learning for Deep Ice Layer 
Tracing in SAR images," IGARSS 2024
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Fused Spatio-Temporal Graph Neural Network
Related work: Represent ice layer as graphs and use a fused spatio-temporal graph neural network that 

plugs Graph Convolution Network into LSTM

(a) Fully-Connected LSTM

Graph convolution LSTM

(b) Fused Spatio-Temporal

Graph Neural Network

AGCN-LSTM/GCN-LSTM/

SAGE-LSTM

Linear Layer

Linear Layer

Linear Layer

Ice Layer Thickness 

Predictions

Temporal Sequence of Spatial

Ice Layer Graphs

Replace Dot Product with graph

convolution
Figure: Diagram of previous fused spatio-
temporal network
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Multi-Branch Spatio-Temporal Graph Neural Network

● Motivation: Let each branch be more specialized and focus on one 

learning task!

● Goal: Improve both the efficiency and the accuracy of previous fused 

spatiotemporal graph neural network

● Contribution: We proposed a universal multi-branch 

spatiotemporal graph neural network that learns from the upper 

𝒎 ice layers and predicts the thickness for the underlying 𝒏 layers
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Multi-Branch Spatio-Temporal Graph Neural Network

(a) Radargram (b) Labeled images

𝑚 Temporal Ice Layer Graph Inputs

Dimensionality
Reduction

GraphSAGE Layer

Dimensionality
Reduction

Temporal Convolution 
Layer

Spatio Branch Temporal Branch

+

Linear Layer

Linear Layer

Linear Layer

𝑛 Ice Layer 

Thickness 

Predictions

Hard Swish Activation

Hard Swish Activation

Hard Swish Activation

MSE Loss

(c) Architecture of our proposed network
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Dimensionality Reduction

Dimensionality Reduction: Remove irrelevant features

Spatio Branch: Aggregate to construct a compressed spatial graph and remove redundant features

Aggregate

A temporal sequence of 

𝑚 spatial graphs

Compressed spatial graph with 

concatenated node features

Figure: Dimension Reduction for spatio branch

Temporal Branch: Exclude the latitude and longitude from the initial node 

feature
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GraphSAGE

GraphSAGE Inductive Framework: Sample and aggregation

For a certain node 𝑖 and its node feature 𝑥𝑖, GraphSAGE will sample and 

aggregate its neighbor nodes’ representation, defined as follows:

𝒙𝑖
′ = 𝑾1𝒙𝑖 +𝑾2 ∙ 𝑚𝑒𝑎𝑛𝑗∈𝑁(𝑖)𝒙𝑗

Where 𝒙𝑖
′ is the output of GraphSAGE, 

𝑾1,𝑾2are the layer weights, 

𝑁 𝑖 is the sampled neighbor list of node  𝑖, 

𝒙𝑗 is the node feature of neighbors and 

mean is the aggregation function
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Temporal Convolution

Gated linear unit with 2D convolution and skip connection 

𝑃,𝑄, 𝑅 are calculated by a 2D convolution on the input node features 𝑋′ = 𝑅𝑒𝐿𝑈(𝐺𝐿𝑈(𝑃,𝑄) + 𝑅)

Where 𝑃,𝑄, 𝑅 are achieved via three 2d convolution and 𝐺𝐿𝑈 𝑃,𝑄 = 𝑃 × 𝜎(𝑄)

Input sequence of graph with
node feature matrix 𝑿

GLU

ReLU

Conv_1

𝑷

𝑸

𝑹

𝑿′

Conv_2 Conv_3

Figure: Diagram of Temporal Convolution Block
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Overall Performance
Table: Experiment results of GCN-LSTM, GraphSAGE-LSTM, and our proposed Multi-branch model. Results 

are reported as the mean and standard deviation of the RMSE on the test dataset over five individual trials. 

Train time is reported as the average train time over five individual trials

Model RMSE Training Time

(Second)

GCN-LSTM 3.2106± 0.1188 7136

SAGE-LSTM 3.1949± 0.0332 4574

MB-STGNN 𝟑. 𝟏𝟐𝟑𝟔± 𝟎. 𝟎𝟓𝟒𝟖 978
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Qualitative Results

(a) GCN-LSTM (b) SAGE-LSTM (c) Proposed
Multi-branch

Figure: Qualitative results of model predictive. The green line is the ground truth and the red line is the 
model prediction.
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Summary

• Multi-branch spatial-temporal networks demonstrate superior 

performance over fused networks in terms of both accuracy 

and processing speed. 

• More comprehensive analysis is required for deeper ice 

layers, incorporating data from various radar sensors and 

across different geographic regions
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Thank You!
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