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Motivation

o Global warming has caused serious damage to our environment.
o Accelerated loss of ice from Greenland and Antarctica

o Considerable influence on sea level rise and altering ocean
currents

millions of people around the world at risk
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Motivation

« The Intergovernmental Panel on Climate Change estimates that the sea
level could increase by 26-98cm by the end of this century.

o This large range in predicted SLR can be partially attributed to an

incomplete understanding of bed topography, snow accumulation, and
ice dynamics.

o Precise calculation of ice thickness is very important for sea level and
flood monitoring.
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Tracking the internal layers of ice sheet

e Tracking the internal layers of an ice sheet is
important for calculating surface mass balance

e This helps in extrapolating ice age from B g R
subsurface measurements and inferring
otherwise difficult-to-observe ice dynamic L
processes

» A precise understanding of the spatiotemporal
variability of snow accumulation in the
Greenland ice sheet is important to reducing
the uncertainties in current climate model
predictions and future sea level rise.
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Traditional techniques

o Capturing ice layer thickness is
difficult

o Generally done by gathering ice cores
« EXxpensive
- Hard to gather
« Cover asmall area
« Limited in depth
« Invasive
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Airborne Radar

Airborne radar has become a popular method of
gathering thickness measurements

Echograms are very noisy

Ice layer borders are difficult to distinguish
Tracking englacial ice layers is difficult because et 2011 e e et St NAGAS e vt S e fom
of the large number of layers, their close PSS gsienasa oS

proximity to each other, and their common
discontinuities.

The number, thickness, and curvature of layers
can vary across an ice sheet and are not
consistent, unlike the bedrock which is present
throughout
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Snow Radar

CR" SIS

Center for Remote Sensing
and Integrated Systems

Snow Radar Parameters

Bandwidth 2-8 GHz
Pulse duration 250 ps

PRF 2 kHz
Transmit power 100 mW
Intermediate frequency range 62.5-125 MHz
Sampling frequency 125 MHz
Range resolution ~ 4 cm

Along-track footprint 145 m
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Spatial plot of dataset flight lines and neighboring ice cores. Flight lines in Blue are the training
data while those in Red (L1), Green (L2), and Yellow (L3) are the test data.
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Input Image Predicted Output Converted to Layers

GT Predicted
Thickness Thickness
2257 214
38.36 40.46
2829 27.13
24.04 2391
2871 29.77
24.61 2354
285 2854
29.03 2918
2778 2801
2459 24.33
25.84 2523
26.23 26.25
2588 2531
2062 20.08
3255 3041
1886 2198
3128 3127
2336 2342
19.31 1913
19.05 2041
22.22 2135
25.02 2318
133 1162

Thickness Prediction
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Rahnemoonfar, M., Yari, M., Paden, J., Koenig, L., & Ibikunle, O.
(2021). Deep multi-scale learning for automatic tracking of internal
layers of ice in radar data. Journal of Glaciology, 67(261), 39-48.
doi:10.1017/jog.2020.80
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Fig. 3. Mean absolute error (MAE) of thickness estimation over the test set
D. Varshney, O. Ibikunle, J. Paden and M. Rahnemoonfar, !
"Learning Snow Layer Thickness Through Physics Defined
Labels," IGARSS 2022 m

(c) GAN simulated data (d) Physics simulated data

Yari, M., Ibikunle, O*., Varshney, D.*, Paden, J., Rahnemoonfar, M., Airborne
Ice Penetrating Radar Data Simulation with Deep Learning and Physics-
driven Methods", IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 2021
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Previous works
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Along-track (~14.5m/pixel)
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Graph Convolutional Networks

Is it possible to predict the
thickness of deep ice layers
given the thickness of shallow
ice layers?

Each echogram is converted to
a series of temporal graphs
Each ice layer becomes one
graph

Each column of pixels becomes
one node in each graph

Node Features
(Latitude, Longitude, Thickness)

140.6069, —75.3781, 58|
[10.6069, —75.3781, 46H—

[40.6069, —75.3781, 317
40.6069, —75.3781, 54
40.6069, —75.3781, 52
40.6069, —75.3781, 47

Targets
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Each node always has three base features:

1.
2.
3.

Latitude
Longitude
Ice layer thickness

Physical features from MAR

kb=

Snow mass balance
Surface temperature
Meltwater refreezing
Height change due to melt
Amount of snowpack

Lat: 70.0112
Long: 59.3317
Thickness: 49
SMB: 0.55

Temp: 41.2

Weight = 0.52 Weight = 0.71

Lat: 70.0015
Long: 59.2239
Thickness: 71
SMB: 0.8

Temp: 42.5

Lat: 70.0058
Long: 59.2255
Thickness: 55
SMB: 0.43
Temp: 47.2

Weight = 0.91

Weight = 0.55

Weight = 0.89 Weight = 0.86

Lat: 70.0024
Long: 59.2329
Thickness: 68
SMB: 0.5

Temp: 43.6
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Graph Convolutional neural networks
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B. Zalatan and M. Rahnemoonfar, "Recurrent Graph
Convolutional Networks for Spatiotemporal
Prediction of Snow Accumulation Using Airborne
Radar,"” 2023 IEEE Radar Conference
(RadarConf23), 2023

B. Zalatan and M. Rahnemoonfar, "Prediction of deep
ice layer thickness using adaptive recurrent graph
neural networks," 2023 IEEE Conference on Image
Processing (ICIP23), 2023

B. Zalatan and M. Rahnemoonfar, "Prediction of
Annual Snow Accumulation using a Recurrent
Graph Convolutional Approach," IGARSS 2023

M. Rahnemoonfar and B. Zalatan, "Physics-
informed Machine Learning for Deep Ice Layer
Tracing in SAR images," IGARSS 2024
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Fused Spatio-Temporal Graph Neural Network

Related work: Represent ice layer as graphs and use a fused spatio-temporal graph neural network that
plugs Graph Convolution Network into LSTM

Temporal Sequence of Spatial

(@) Fully-Connected LSTM Ice Layer Graphs
i =0(Wai* @t + Wi ¥ hy_1 +wWe @ c4_1 + b;), R S S
f=0Wapxxi +Whsxhe 1 +wep @ ce1 + by),

Ccp = fz e+ @ ta,nh(Ww,: * Ty + Whe* he1 + bc), | ‘ | |
0= 0(Wao * 2t + Who % he—1 + weo © & + bo), AGCN-LSTM/GCN-LSTM/
h: = 0o ® tanh(c;), SAGE-LSTM
Replace Dot Product with graph R D Figure: Diagram of previous fused spatio-
convolution
¥ temporal network
Linear Layer
Graph convolution LSTM ¥
i =g (Wgi xg Tt + Whi *g ht—1 + wei © ce—1 + bi), Linear Layer
f= O’(fo *g Ty + th *g he_1 + Wef @ Cp—1 +bf),
¢ = fi ©®cim1 + 1 © tanh(Wee #g 2t + Whe *g he—1 + be), {
0= (Wi *g Tt + Who #g hi—1 + weo @ ¢ + ba), Ice Layer Thickness
ht = 0 @ tanh(c;). Predictions

(b) Fused Spatio-Temporal
Graph Neural Network
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Multi-Branch Spatio-Temporal Graph Neural Network

o Motivation: Let each branch be more specialized and focus on one
learning task!

o Goal: Improve both the efficiency and the accuracy of previous fused
spatiotemporal graph neural network

o Contribution: We proposed a universal multi-branch
spatiotemporal graph neural network that learns from the upper
m ice layers and predicts the thickness for the underlying n layers
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Multi-Branch Spatio-Temporal Graph Neural Network
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(a) Radargram

m Temporal Ice Layer Graph Inputs
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Reduction Reduction
GraphSAGE Layer Temporal Convolution
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a

(c) Architecture of our proposed network
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Dimensionality Reduction

Dimensionality Reduction: Remove irrelevant features

Spatio Branch: Aggregate to construct a compressed spatial graph and remove redundant features

'*r-—T\/’

L
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I - : Aggregate W
ﬂY —————————

A temporal sequence of Compressed spatial graph with
m spatial graphs concatenated node features

Figure: Dimension Reduction for spatio branch

Temporal Branch: Exclude the latitude and longitude from the initial node
feature
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GraphSAGE

GraphSAGE Inductive Framework: Sample and aggregation

For a certain node i and its node feature x;, GraphSAGE will sample and
aggregate its neighbor nodes’ representation, defined as follows:
x; = Wix; + W, - meanjen i) X;

Where x; is the output of GraphSAGE,
W, W,are the layer weights,

N (i) is the sampled neighbor list of node i,
x; is the node feature of neighbors and
mean is the aggregation function
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Temporal Convolution

Gated linear unit with 2D convolution and skip connection
P,Q, R are calculated by a 2D convolution on the input node features X' = ReLU(GLU(P, Q) + R)
Where P, Q, R are achieved via three 2d convolution and GLU(P,Q) = P X a(Q)

Input sequence of graph with
node featule matrix X

Figure: Diagram of Temporal Convolution Block
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Overall Performance

Table: Experiment results of GCN-LSTM, GraphSAGE-LSTM, and our proposed Multi-branch model. Results
are reported as the mean and standard deviation of the RMSE on the test dataset over five individual trials.
Train time is reported as the average train time over five individual trials

GCN-LSTM 3.2106 £ 0.1188 7136

SAGE-LSTM 3.1949 + 0.0332 4574

MB-STGNN 3.1236+ 0.0548 978

21



Qualitative Results

(a) GCN-LSTM (b) SAGE-LSTM (c) Proposed
Multi-branch

Figure: Qualitative results of model predictive. The green line is the ground truth and the red line is the
model prediction.

22
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Summary

Multi-branch spatial-temporal networks demonstrate superior
performance over fused networks in terms of both accuracy

and processing speed.

More comprehensive analysis is required for deeper ice
layers, incorporating data from various radar sensors and
across different geographic regions
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Thank You!

ThAve
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