

Edge-Device LLM Competition @ NeurIPS 2024

Team Tinytron

2024/12/15

Who we are?

- Tencent AIPD
- Team Tinytron

How we win? / ---- Model Development

- Challenge Breakdown
- Establish Baselines
- Push the Limits

What we Learn?

- —— System Optimization
- Challenge Breakdown
- Memory Footprint
- Latency

- Tencent AI Platform Dept. (AIPD): Central Hub for AI Research and Applications in Gaming
 - Founded in 2016, We are a trailblazer of AI + Gaming in China.
 - Research Scope: Decision AI (Massive RL) + Generative AI (Large Models)
 - Industrial Application: 30+ regions, 50M+ DAU, 1B+ daily API calls, 700+ patents

FineArt (2016~) Adopted in Training Program of China's National Go Team

WeKick (2020) Winner of Google Research Football Simulation Competition

Juewu-MC (2021) Champion of NeurIPS 2021 MineRL Competition (Sample Efficient RL)

LuckyJ (2023~) 1st Mahjong AI reaching the 10th dan on Tenhou.net

Al Coaching (2024~) Voice Coaching for MOBA Game HoK On-Device Deployment of TTS Model

Team Tinytron: Close Collaboration between AI Algorithm Researchers and System Engineers

Lvfang Tao

Renjie Mao

— Model Development and Evaluation

Linhang Cai

Yongguang Lin Xiaowen Huang

Challenge Breakdown

- Data: Obtain Best-Possible Training Data from Allowed Sources
 - Cleaning: Heuristic Filtering & Quality Rating
 - Mixing: Efficient Data Composition
 - Generation: Get Data in Target Domain with Pruned Model
- **Training**: Achieve Faster Convergence with Curated Data & Allowed Teacher Model
 - Pruning: Minimizing Loss on Evaluation Tasks
 - -> Gradient-Based Pruning with Distillation (Track1)
 - Continued Training / Pretraining: Maximizing Capability Recovery / Improvement on Evaluation Tasks
 -> Continued Pretraining with Distillation (Track1) / Efficient Pretraining (Track2)

On-Device Optimization

- Reduce Memory Footprint
- Reduce Inference Latency

Track1 (Baseline): Data Processing

- Tradeoff: Quality vs Quantity
 - We adopt the OH2.5-ELI5 fastText classifier open-sourced by DCLM-Baseline [1]
 - We compare pruning outcomes of different quality thresholds
 - [1] Li, Jeffrey, et al. "DataComp-LM: In Search of the Next Generation of Training Sets for Language Models." NeurIPS 2024 Track Datasets and Benchmarks, <u>www.datacomp.ai/dcIm</u>.

10%

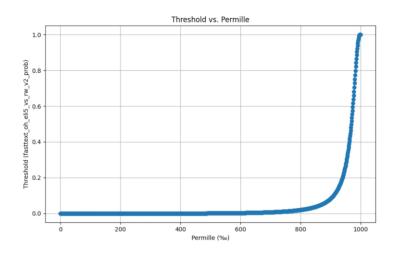
20%

42.01

32.92

16.63

19.68



🗏 Datasets: 🤋 t	eknium/ OpenHerme	s-2.5 □ ♡like 690					
Modalities: 8 Text	Formats: (-) json Lang	uages: English Size:	1M - 10M Tags: 🗰 Synth	etic GPT-4 Distillation	Compilation Libraries:	🔒 Datasets 🛛 🕅 pandas	🕐 Croissant 🚽 + 1
С4 Тор	Commons	FewCLUE-	HumanEval	GSM8K	TruthfulQA	BigBench-	Average
Proportion	ense QA	chid				Hard	Score
	•						

3.66

3.66

r/explainlikeimfive - Reddit

ppears blue. Physics. Explain Like I'm Five

New

12.21

9.40

ELI5: Why snow on a mountain appears white from far away, but every other colour on the mountain

ELI5: When looking up the biggest fish caught on rod and reel, you .

ELI5 - Math in the apocalypse · Today a great deal of maths

0.2375

0.2595

25.74

23.68

20.67

19.22

• Data Mix: Step-by-Step Selecting of Optimal Mixing Ratio

- C4 (Quality Filtered)
- Alpaca (Bilingual Augmented)
- C4 (Code Relevant, Heuristically Filtered with Keywords & Domain Name)

Track1 (Baseline): Pruning with Continued Distillation

hidden-

Solving Pruning Mask with Distilled Gradient

- Like Sheared LLaMA[1], we perform gradient-based optimization to solve the structured pruning problem.
- Weights and masking variables are jointly optimized.
- Key difference is we compute Kullback–Leibler divergence against teacher logits for more accurate and noise-tolerant gradient, guiding guick recovery of the pruned model.

Longer-Term Continued Distillation

- The pruning experiment is inefficient as two copies of teacher model weights persist along the training. (1 copy is frozen, the other is active)
- When pruning mask becomes stable, we perform structured pruning, then use internal training framework (based on Megatron-Core) for computeefficient continued pretraining on the pruned model (via distillation).

MHA

Structured Pruning

 z^{layer}

FFN 2

Source Model

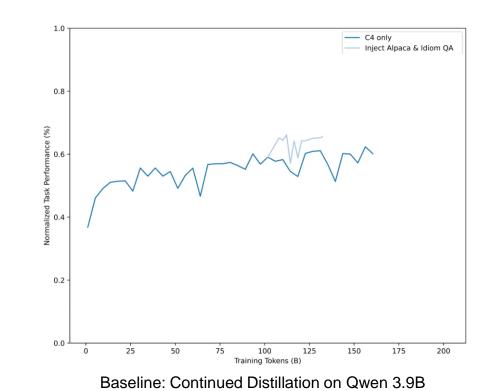
 $L_S = 3, d_S = 6, H_S = 4, m_S = 8$

MHA 2

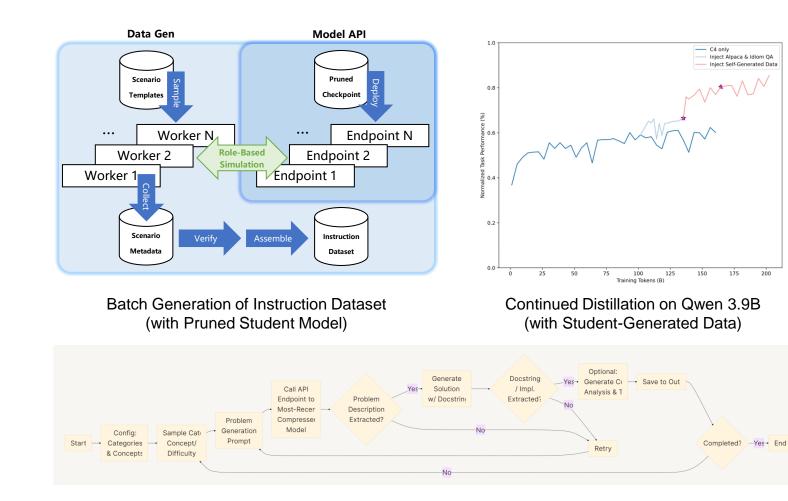
Tencent Al

Target Mode

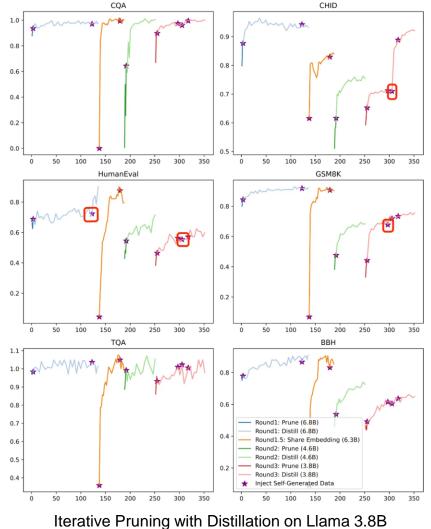
Platform Dept



Track1 (Final): Data Enrichment with Pruned Model



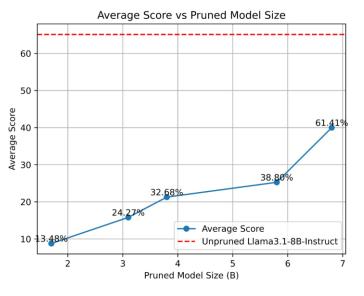
Construction of the CodeExercises Dataset



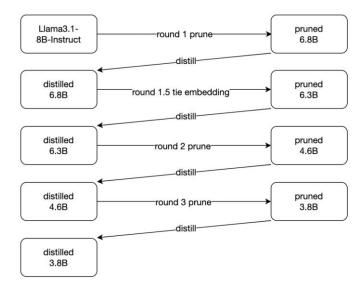
200

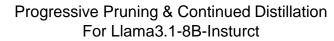
(with Student-Generated Data)

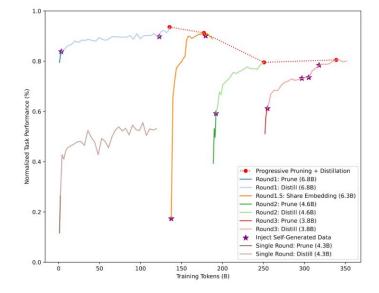
Track1 (Final): Progressive Pruning & Continued Distillation



Simple Comparison (at fixed LR=1e-4)







Normalized Average Performance (6 Public Tasks)

Track2: Data Processing

• Baseline

- Heuristic Filtering & Quality Rating (same with Track1)
- Split into chunks (C4 English)
- MAP-NEO Chinese pipeline (C4-zh)

• Improvement: for math and multi-round ability

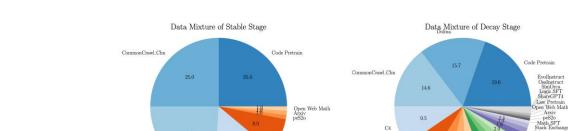
- Further filtering C4-zh based on sentence structure
- Construct idiom cloze multiple-choice QA pairs by replacing idioms in Chinese text with "__"
- Rule-based generation (Simple math, multi-round QA pairs, list/dict manipulation)

Baseline: Curriculum Learning with Learning Rate Annealing (Referencing MiniCPM) ٠

Stable stage •

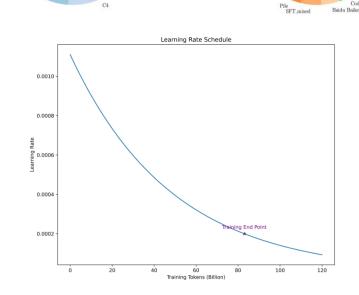
Track2: Training

- Relatively coarse-grained data ٠
- High & Stable learning rate .
- Doubling batch size during training ٠
- Decay stage •
 - Add high quality data ٠
 - Alter proportion of chunks with different qualities ٠
 - Exponential (half-life) decay ٠
- **Improvement: Mitigating Overfitting** ٠
 - Attention & hidden layers dropout •
 - Limit the maximum repetitions for each dataset •



24.0

15.0



Willia

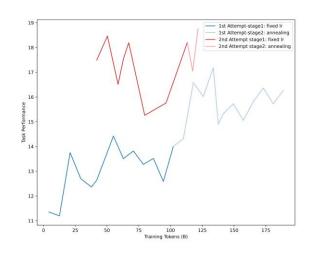
IltraChat nowledge SF1

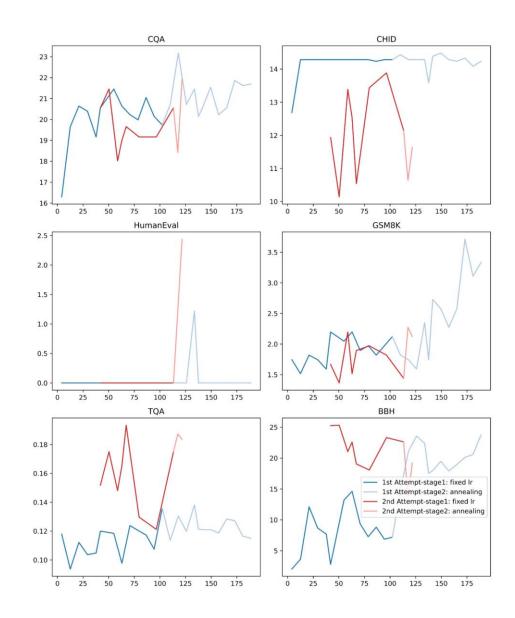
Code_SF1

Baidu Bailo

Track2: Training recipe

- 1st Attempt: Baseline
 - Architecture: QKV bias on / QK LayerNorm
 - Basic Data Filtering / Mixing
 - Curriculum Learning with Learning Rate Annealing as MiniCPM
- 2nd Attempt: Final
 - Enhanced Data Filtering / Mixing / Generation
 - Mitigating Overfitting: Adopt Dropout in attention & hidden layer





System Optimization for Edge-Device LLM Inference

Memory optimization

- Modifying mlc-chat-config.json for reduction of memory occupancy of intermediate tensors
 - Set **max_batch_size** to 1 since the client only needs one user interaction
 - Set **prefill_chunk_size** to 16 for balancing prefilling and memory occupancy
 - Set context_window_size to 512 or 768 as needed
- Force the function getting global memory to return 16GB
- Inference speed optimization:
 - Transpose weight layout for flexible computing
 - Prefill Matmul operation
 - Template: dl.gpu.Matmul()
 - Modify Decode Matmul operation
 - Template: dl.gpu.GEMV()

22	<pre>uint64_t TotalDetectGlobalMemory(DLDevice device) {</pre>
	// Get single-card GPU size.
	TVMRetValue rv;
	<pre>DeviceAPI::Get(device)->GetAttr(device, DeviceAttrKind::kTotalGlobalMemory, &rv);</pre>
	<pre>int64_t gpu_size_bytes = rv;</pre>
	// Since the memory size returned by the OpenCL runtime is smaller than the actual available
	// memory space, we set a best available space so that MLC LLM can run 78 or 88 models on Android
	// with OpenCL.
	<pre>if (device_device_type == kDLOpenCL) {</pre>
31	+ int64_t min_size_bytes = 16LL * 1024 * 1024 * 1024; // Minimum size is 16 GB
	<pre>gpu_size_bytes = std::max(gpu_size_bytes, min_size_bytes);</pre>
	}
	<pre>return gpu_size_bytes;</pre>
20	<pre>class NoQuantize: # pylint: disable=too-many-instance-attributes</pre>
21	+ """Configuration for no quantization but transpose"""
22	
	name: str
24	kind: str

def __init__(self, config: NoQuantize, quant_map: QuantizeMapping) -> None

model_dtype: str # "float16", "float32

assert self.kind == "no-quant"
self._func_cache = {}

model: nn.Module,

class Mutator(nn.Mutator)

quant_map: QuantizeMapping, name_prefix: str,

super().__init__()

self.config = config

self.quant_map = quant_map

def __post_init__(self):

def quantize_model(
 self,

) -> nn.Module:
return model

38 +

39 + 40 +

41 +

42 +

43 +

Results

Category	Model	Release Date	Total Params	Training Tokens (B)	EdgeLLM-Public (6 datasets)	EdgeLLM-Eval (8 datasets)	Extended (12 datasets)
Tinytron Submission (November)	Track1: Llama3.1-8B-Instruct-Tinytron		3826965504	324	57.01	55.41	58.61
	(Progressive pruning + distill+ self-generate data)		Normalized (to	uncompressed)	82.97%	82.67%	84.28%
	Track1: Qwen2-7B-Instruct-Tinytron		3861627392	205	55.96	55.05	57.08
	(Soft pruning + distill + self-generate data)		Normalized (to uncompressed)		96.80%	88.42%	86.86%
	Track1: Phi-2-Tinytron-preview	2024/11/20	2906924544	78	46.48	45.87	49.24
	(Distill across different vocabs, student use Qwen Vocab)		Normalized (to uncompressed)		104.31%	105.03%	108.84%
	Track1: Average score of three compressed models		3531839147	1	53.15	52.11	54.98
	(Track1 average, aligned with official ranking criteria)		Normalized (to uncompressed)		93.20%	90.38%	91.38%
	Track2: Cauchy-3B-preview		3110275328	221	15.88	18.79	18.66
	Llama3.1-8B-Instruct-Tinytron-preview	2024/10/20	4311419904	95	40.91	42.72	48.82
	(Distill baseline: no progressive pruning, no self-gen data)		Normalized (to uncompressed)		59.54%	63.72%	70.19%
	Qwen2-7B-Instruct-Tinytron-preview	2024/10/11	3861627392	137	44.28	46.15	51.25
Tinytron Baselines (October)	Distill baseline: no self-generated data)		Normalized (to uncompressed)		76.60%	74.13%	78.00%
	phi-2	/	2779683840	1	44.56	43.67	45.24
	(Original uncompressed model)		Normalized (to uncompressed)		100.00%	100.00%	100.00%
	Track1: Average score of three compressed models	/	3650910379	1	43.25	44.18	48.44
	(Track1 average, aligned with official ranking criteria)		Normalized (to uncompressed)		75.84%	76.63%	80.50%
SOTA Distillation Methods	Sparse-Llama-3.1-8B-ultrachat_200k-2of4 (2:4 Semi-structured sparse, layer-wise distillation)	2024/11/25	8030261248	13	53.34	53.44	57.95
	Llama-3.2-1B-Instruct (Pruning 3.1 8B base as initialization + post training)	2024/9/25	1235814400	9000	38.99	40.07	43.35
	Llama-3.2-3B-Instruct (Pruning 3.1 8B base as initialization + post training)	2024/9/25	3212749824	9000	56.49	56.09	59.96