Conditioning 3D Diffusion Models with 2D Images:

Towards Standardized OCT Volumes through En Face-Informed Super-Resolution

Coen de Vente^{1,2,3}, Mohammad Mohaiminul Islam^{1,2}, Philippe Valmaggia^{4,5}, Carel Hoyng⁶, Adnan Tufail⁷, Clara I. Sánchez^{1,2} on behalf of the MACUSTAR consortium

¹qurAl Group, Informatics Institute, University of Amsterdam, The Netherlands; ²Amsterdam UMC location University of Amsterdam, Biomedical Engineering and Physics, The Netherlands; ³DIAG, Department of Radiology and Nuclear Medicine, Radboudumc, The Netherlands; ⁴Department of Biomedical Engineering, Universität Basel, Switzerland; ⁵Department of Ophthalmology, University Hospital Basel, Switzerland; ⁶Department of Ophthalmology, Radboudumc, Nijmegen, The Netherlands; ⁷Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.

Motivation

- -Volumetric medical images commonly suffer from **high anisotropy** (*i.e.*, having different resolutions in different directions). For example, in optical coherence tomography (OCT), **slice spacing varies substantially**.
- This can result in inaccuracies in shape measurements or quantifications of biological objects of interest:

Experiments

- -Dataset: MACUSTAR, a European multicenter study.
- -Training: Patch size of 128 × 128 × 16.
- -Sampling: Patch size of 496 × 496 × 16, using DDIM & RePaint^[1], upsampling volumes from 30 to 240 slices.

	Tricubic	DDIM	DDIM _{ef} (no CFG)	DDIM _{ef}
MSE ↓	0.006 ± 0.002	0.006 ± 0.003	0.006 ± 0.003	0.006 ± 0.003
SSIM ↑	0.451 ± 0.116	0.444 ± 0.107	0.447 ± 0.107	0.447 ± 0.107
PSNR (dB)↓	22.472 ± 1.418	22.401 ± 1.644	22.495 ± 1.673	22.450 ± 1.683
$\textbf{LPIPS}_{\textbf{axi}} \downarrow$	0.120 ± 0.027	0.138 ± 0.030	0.138 ± 0.030	0.141 ± 0.031
$\textbf{LPIPS}_{\textbf{cor}} \downarrow$	0.548 ± 0.103	0.158 ± 0.047	0.158 ± 0.048	0.162 ± 0.050
$\textbf{LPIPS}_{\textbf{sag}} \downarrow$	0.540 ± 0.088	0.144 ± 0.049	0.144 ± 0.049	0.147 ± 0.050
LPIPS _{2.5D} ↓	0.403 ± 0.072	0.147 ± 0.041	0.147 ± 0.042	0.150 ± 0.043
$\textbf{LPIPS}_{_{\textbf{efproj}}}\downarrow$	0.231 ± 0.055	0.063 ± 0.039	0.060 ± 0.039	0.064 ± 0.039

 Segmented volume
 64.0 nL
 49.1 nL (-23.2%)

-Aim: Artifically upsample #slices in volumetric data.

Methods

Table I: Classical image similarity metrics (MSE, SSIM, and PSNR) and perceptual metrics (all LPIPS variants). Results show mean ± std. dev.

reference $\tilde{v}_{\theta}(\mathbf{x}_{t}, t, \mathbf{x}_{LR}, \mathbf{x}_{enface}) = (1 - w)v_{\theta}(\mathbf{x}_{t}, t, \mathbf{x}_{LR}) + wv_{\theta}(\mathbf{x}_{t}, t, \mathbf{x}_{LR}, \mathbf{x}_{enface})$

Fig. 3: Effect of classifier-free guidance (CFG).

Conclusion

- Conditioning 3D diffusion models with **complementary**, **readily available 2D imaging** data results in **improved super-resolution**, especially in terms of perceptual metrics and image sharpness.
- This could be an important step **towards standardized and high quality medical imaging**.

c.w.devente@uva.nl coendevente.com

References

[1] Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., & Van Gool, L. (2022). Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 11461–11471).

