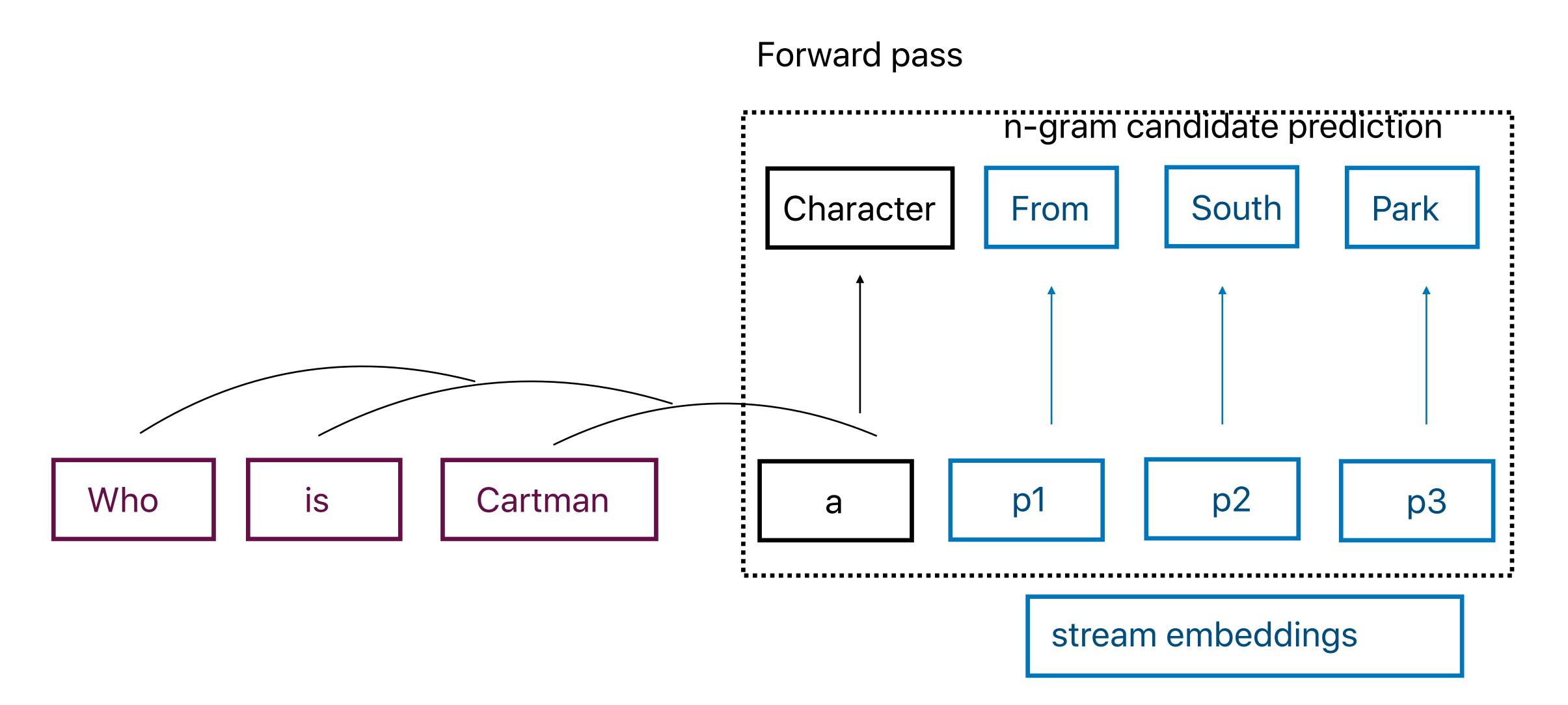
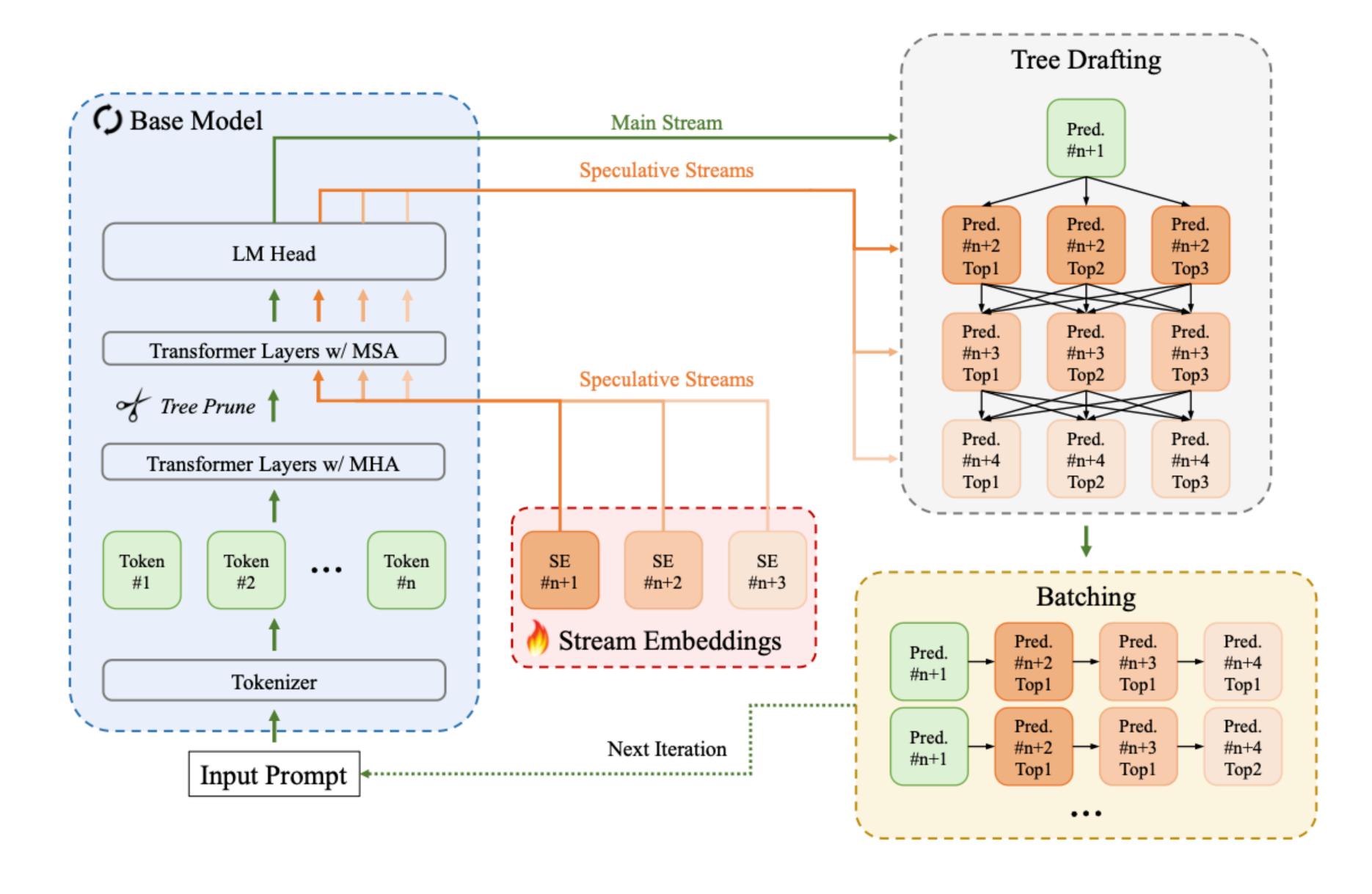


Speculative Streaming: Fast LLM Inference without Auxiliary Models


Nikhil Bhendawade · Irina Belousova · Qichen Fu · Henry Mason · Mohammad Rastegari · Mahyar Najibi

Speculative Decoding vs Speculative Streaming



2

Speculative Streaming 101

Architecture

Example

```
# Person 2 # thinks Lincoln is a character

# Person 2 # thinks Lincoln was a character and he

# Person 2 # thinks Lincoln was a man of character and he

# Person 2 # thinks Lincoln was a man of sound character and # person

# Person 2 # thinks Lincoln was a man of sound character and # person

# Person 2 # thinks Lincoln was a man of sound character and # person 1 # adm ires him

# Person 2 # thinks Lincoln was a man of sound character and # person 1 # adm ires him for his courage and and

# Person 2 # thinks Lincoln was a man of sound character and # person 1 # adm ires him for his courage and rights and humility . </s>
```

Figure 19: Speculative streaming on Dialog Summarization task for $\gamma=4$ and k=1, each pass verifies the previous draft and generates a maximum of 5 tokens. For instance, in pass 3, "is", "a", "character" are rejected and "was", "a", "character", "and", "he" are speculated.

Mean walltime speedup on Vicuna and Llama-2 models

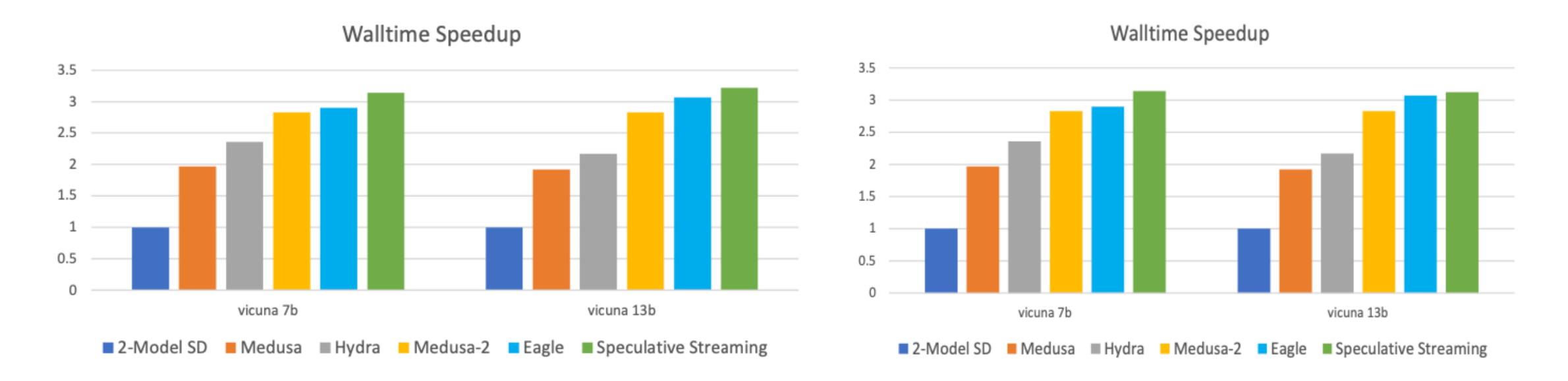


Figure 3: Mean walltime speedup on Vicuna models of various sizes to demonstrate scalability and generalizability of our approach on MT-Bench.

Figure 4: Mean walltime speedup on Llama-2 models of various sizes to demonstrate scalability and generalizability of our approach.

Results

Dataset	Model	Method	SpeedUp (†)	CR Ratio (†)	Metric (†)	# Extra Parameters (\(\psi \)
SqlContext		Baseline	1.00	1.00	84.16	_
	Mistral-Instruct-7B	Medusa-2	2.79	3.18	84.18	5.9E8
	Wilstrai-Histruct-/D	Eagle	2.75	3.58	84.16	2.4E8
		SS (ours)	2.93	3.67	84.50	8.2E4
		Baseline	1.00	1.00	80.92	_
	PHI-3-Instruct-3.8B	Medusa-2	2.54	2.81	81.07	4.3E8
		Eagle	2.62	3.37	80.92	1.3E8
		SS (ours)	2.92	3.65	84.10	$\underline{6.1E4}$
	Llama2-7b	Baseline	1.00	1.00	85.37	_
		Medusa-2	2.52	2.98	85.31	5.9E8
		Eagle	2.59	3.31	85.37	2.4E8
		SS (ours)	2.81	3.57	85.93	8.2E4
	Mistral-Instruct-7B	Baseline	1.00	1.00	44.74/36.76	_
		Medusa-2	1.89	2.05	44.78/36.95	5.9E8
		Eagle	1.95	2.56	44.74/36.76	2.4E8
		SS (ours)	2.04	2.96	44.89/37.09	8.2E4
	PHI-3-Instruct-3.8B	Baseline	1.00	1.00	46.08/38.28	_
DialogSum		Medusa-2	2.15	2.26	45.82/37.78	4.3E8
		Eagle	2.05	2.31	46.08/38.28	1.3E8
		SS (ours)	2.32	2.85	46.30/38.32	$\underline{6.1E4}$
	Llama2-7b	Baseline	1.00	1.00	44.90/37.0	_
		Medusa-2	1.76	1.95	44.17/37.02	5.9E8
		Eagle	1.86	2.57	44.90/37.0	2.4E8
		SS (ours)	1.90	3.05	45.0/37.85	8.2E4
E2E-NLG	Mistral-Instruct-7B	Baseline	1.00	1.00	67.82/48.99	_
		Medusa-2	2.78	3.19	67.74/48.85	5.9E8
		Eagle	2.85	3.52	$67.82^{'}/48.99$	2.4E8
		SS (ours)	2.93	3.67	$68.37^{'}/49.09$	8.2E4
	PHI-3-Instruct-3.8B	Baseline	1.00	1.00	68.72/49.31	
		Medusa-2	2.39	2.63	68.41/49.08	4.3E8
		Eagle	2.42	2.76	68.72/49.31	1.3E8
		SS (ours)	2.36	2.72	$69.38^{'}\!\!/\!50.22$	6.1E4
	Llama2-7b	Baseline	1.00	1.00	69.47/49.54	
		Medusa-2	2.82	3.19	69.41/49.44	5.9E8
		Eagle	2.79	3.26	69.47/49.54	2.4E8
		SS (ours)	2.89	3.38	69.52 / 49.93	8.2E4

Comparison with standard draft-target speculative decoding approach

Dataset	Target	Method	Target calls	Draft Calls	Walltime Latency (ms, \downarrow)	Metric (†)
SqlContext	OPT-1.3b	Two-model SD	6.59	22.35	269.24	84.98
		SS (ours)	7.79	0	133.48	87.40
	OPT-6.7b	Two-model SD	6.60	22.41	301.10	89.13
		SS (ours)	6.88	0	157.04	89.34
Dialogsum	OPT-1.3b	Two-model SD	11.65	42.59	493.59	43.40/35.60
		SS (ours)	13.41	0	248.26	44.07/35.99
	OPT-6.7b	Two-model SD	12.15	35.76	555.99	44.40/36.60
		SS (ours)	14.45	0	444.67	44.42/36.81
E2E-NLG	OPT-1.3b	Two-model SD	8.86	31.47	345.72	69 . 48 /50.17
		SS (ours)	9.80	0	164.23	69.32/50.51
	OPT-6.7b	Two-model SD	8.90	31.58	412.02	69.34/ 49 .88
		SS (ours)	10.31	0	244.80	69 . 45 /49.78

Parameter/Memory access

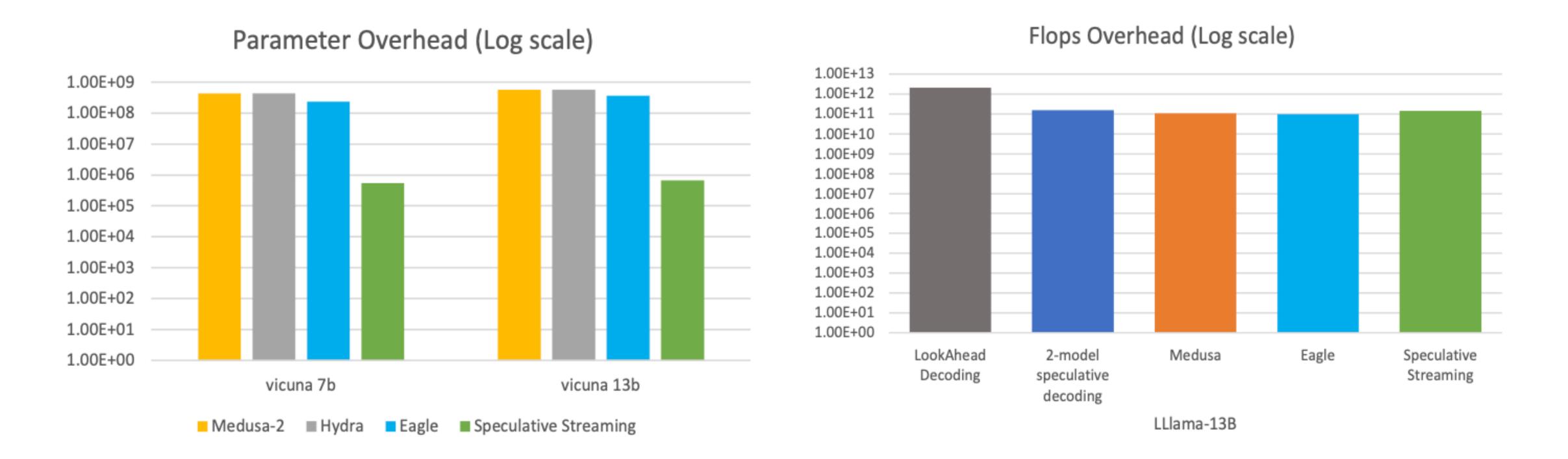


Figure 5: Parameter/Memory access overhead of Figure 6: FLOP overhead of different SD archidifferent SD architectures with Vicuna models.

tectures with Llama-13B.

Conclusion

The key advantages of Speculative Streaming are as follows

- Achieves substantial 1.9 3X decoding speedups and improves downstream performance metrics through a single, streamlined finetuning process leveraging multi-stream attention
- Demonstrates resource efficiency with ~10000X fewer additional parameters compared to Medusa, Hydra and Eagle, while still surpassing them in speedup gains
- Simplifies deployment by removing the complexity of managing, aligning, and switching between multiple models during inference

