

ViTally Consistent: Scaling Biological Representation Learning for Cell Microscopy

Kian Kenyon-Dean, Zitong Jerry Wang, John Urbanik, Konstantin Donhauser, Jason Hartford, Saber Saberian, Nil Sahin, Ihab Bendidi, Safiye Celik, Marta Fay, Juan Sebastián Rodríguez Vera, Imran S Haque, Oren Kraus

Kian Kenyon-Dean @ NeurIPS FM4Sci Workshop 2024 Staff Machine Learning Engineer, Recursion

Context & related work

Masked Autoencoding (MAE): effective self-supervised learning when scaled

Phenom-1: Large Vision Transformer (ViT-L)

Recall @ [5,95]% percentiles on StringDB

e BxBx3-ViT-B/16

RxRx3-ViT-L/16

RPI-52M-ViT-L/16

0.48

0.47

0.46

0.45 Becall 0.44

0.43

RPI-93M-ViT-L/8+

parameters (millions)

100

RPI-52M-VIT-L/8+

RPI-52M-ViT-B/8

- ViT-Large/8, 330 million parameters (1024+1 tokens per sample)
- MAE trained on RPI-93M for ~40 epochs

Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology

Our contributions in this work

General foundation model training approach

	Phenom-1 (MAE-L/8)	Phenom-2 (MAE-G/8)
Training Regime	Self-supervised MAE	Self-supervised MAE
Model architecture	Vision Transformer (ViT-L/8) 24 blocks	Vision Transformer (ViT-G/8) 48 blocks
Model parameters	330 million	1.9 BILLION (+6x)
Dataset base	93M unique well images	Specially curated Phenoprints-16M (-6x)
Dataset sampling	3.5 billion crops == 3.6 trillion tokens	8 billion crops (+2.2x) == 8.2 trillion tokens
Training time	20,000 A100 hours	43,000 H100 hours (+4x) (i.e., >5 GPU-years!)

Channel-Agnostic MAE baseline

- CA-MAE-S/16 (1536+1 tokens per sample)
 - Trained on **RxRx3** for 100 epochs
- OpenPhenom new open-source publicly available model on HuggingFace
 - CA-MAE-S/16 but also trained on RxRx3 + public JUMP-CP data.

Evaluation: how "good" (in terms of batch effect correction / *replicate consistency* and *relationship prediction*) are your model's **genetic representations** derived from images?

 Inference regime: 36 center crops (256 × 256 × 6) per well (2048 × 2048 × 6 pixels) →
80 million RxRx3 images fed forward through a single trained model to have a comprehensive whole-genome evaluation \$\$

Whole-Genome analysis is expensive and labourintensive, so let's linearly probe the model on a small dataset to find the best layer.

Predicted label

ACYL COA BIOSYSTHESIS ADHERENS JUNCTIONS AMINO ACID METABOLISM APOPTOSIS AUTOPHAGY BETA_OXIDATION_OF_FATTY_ACIDS CALCIUM SIGNALING CLATHRIN_COATED COPI COPII_VESSICLES DNA DAMAGE DS HOMOLOGOUS RECOMBINATION DYNEIN ER PROTEIN TRANSLOCATION EXOSOME GAP JUNCTIONS GOLGI MAPK MITOCHONDRIA STRUCTURE MITOCHONDRIA_TOMMS_TIMMS_ELECTRON_TRANSPORT_CHAIN MTOR PATHWAY NONSENSE_MEDIATE_DECAY NUCLEAR_PORE NUCLEOLUS STRUCTURE NUCLEOTIDE METABOLISM P53_STRESS_SIGNALING PENTOSE PHOSPHATE PATHWAY PERIXOSOME_BIOLOGY POL₂ PRESPLICOSOME COMPLEX PROTEASOME RIBOSOME LARGE RIBOSOME_SMALL TCA_CYCLE TIGHT_JUNCTIONS TRANSLATION INITIATION COMPLEX TRANSPORT_OF_FATTY_ACIDS TUBULIN UNFOLDED_PROTEIN_RESPONSE VATPASE NEGATIVE CONTROL

label

True

New task: Anax

Table 4: Anax groups and their associated genes. This table presents a comprehensive list of gene groups and their corresponding genes.

Anax Group	Genes	
Acyl Coa Biosynthesis	ELOVL2, ELOVL5, ELOVL6, HACD1, HACD2, HSD17B12, SCD, SCD5, TECR	
Adherens Junctions	ACTB, ACTG1, AFDN, CDH1, CTNNA1, CTNNB1, CTNND1, NECTIN1, NECTIN3, NECTIN4	
Amino Acid Metabolism	ALDH4A1, ARG2, CKB, CKMT2, CPS1, DAO, OTC, PYCR2, PYCR3, SAT1	
Apoptosis	CFLAR, DFFB, CASP6, CASP3, FASLG, BCL2, DFFA, XIAP, TNFSF10, AKT3	
Autophagy	ATG12, ATG3, ATG4B, ATG4C, ATG7, GABARAP, PIK3C3, PIK3R4, PRKAA1, ULK1	
Beta Oxidation Of Fatty Acids	ACAA2, ACADL, ACADM, ACADS, ACADVL, ECHS1, ECH, HADH, HADHA, HADHB	
Calcium Signaling	ADCY1, ADCY2, ADCY3, CALM1, CAMK2B, CAMK2D, PDE1B, PDE1C, PRKACG, PRKX	
Clathrin Coated Vesicles	AP2A1, AP2A2, AP2B1, AP2M1, AP2S1	
COPI	ARCN1, COPA, COPB1, COPB2, COPE, COPG1, COPZ1	
COPII Vesicles	SEC13, SEC23A, SEC24B, SEC24D, SEC31A	
DNA Damage Repair	BLM, BRCA2, EME1, NBN, POLD2, RAD51B, RAD51C, RAD51D, RPA1, XRCC2	
Dynein	DYNCIHI, DYNCII2, DYNCILII, DYNCILI2, DYNLTI	
ER Protein Translocation	SPCS3, SEC61A1, SRP14, SRP72, SPCS1, SRPRA, SEC11A, SRP68, SRPRB, SRP54	
Exosome	DIS3, EXOSC10, EXOSC3, EXOSC4, EXOSC5, EXOSC6, EXOSC7, EXOSC8, EXOSC9, MPHOSPH6	
Gap Junctions	ADCY8, DRD2, HTR2C, ITPR2, LPAR1, PDGFD, PDGFRB, PLCB3, TUBA1C, TUBB1	
Golgi	ACTR10, ACTR1A, CAPZA3, COG4, CTSZ, PPP6C, RAB1B, SEC22C, SEC24C, TMED9	
MAPK	DUSP4, EGF, FGF18, FGF20, HSPB1, MAP2K2, MAPKAPK5, RAC1, RAP1A, RASGRP3	
Mitochondria Structure	APOOL, APOO, TMEM11, CHCHD6, ATP5ME, MICOS13, ATP5F1C, DNAJC11, DMAC2L, ATP5MF	
Mitochondrial Transport	ATP5F1A, COA4, COA6, COX17, HSPA9, IDH3G, PTTRM1, PMPCA, PMPCB, SLC25A4	
mTOR Pathway	CAB39, CAB39L, EIF4EBP1, MLST8, PRKAA2, RPS6KB1, RPTOR, STK11, STRADA, TSC1	
Nonsense Mediated Decay	CASC3, EIF4A3, MAGOH, MAGOHB, RBM8A	
Nuclear Pore	NUP107, NUP133, NUP153, NUP188, NUP205, NUP37, NUP85, NUP93	
Nucleolus Structure	FBL, NAT10, NOLC1, NOP58, UTP20	
Nucleotide Metabolism	ADSL, ADSS1, ADSS2, ATIC, GMPS, IMPDH1, IMPDH2, PAICS, PFAS, PPAT	
P53 Stress Signaling	ATM, ATR, CCNG1, CDK1, CHEK1, CHEK2, MDM2, MDM4, TP53, TP73	
Pentose Phosphate Pathway	G6PD, TALDO1, DERA, RPE, PGM2, RBKS, PGD, PGLS, RPEL1, PRPS2	
Peroxisome Biology	ACOT8, AGPS, BAAT, HMGCL, HSD17B4, MLYCD, PAOX, PEX12, PEX6, PIPOX	
Prespliceosome Complex	ALYREF, AQR, CRNKL1, DDX5, HNRNPK, LSM2, PLRG1, PRPF4, SMNDC1, SRSF4	
Proteasome	PSMA1, PSMA4, PSMB1, PSMB2, PSMB7, PSMA6, PSMA3, PSMB4, PSMA5, PSMB3	
Ribosome Large	RPL13A, RPL11, RPL10, RPL23A, RPL30, RPL7A, RPLP2, RPL28, RPL5, RPL27A	
Ribosome Small	RPS2, RPS6, RPS8, RPS16, RPS11, RPS3A, RPS19, RPS15, RPS4X, RPS9	
RNA Polymerase II	POLR2A, POLR2B, POLR2C, POLR2G, POLR2I, POLR2L	
TCA Cycle	AC02, DLST, FH, IDH2, IDH3B, MDH2, OGDH, SDHB, SUCLA2, SUCL02	
Tight Junctions	CLDN14, CLDN17, CLDN18, CLDN19, CLDN4, CLDN8, CLDN9, MPP5, PARD6B, PRKC1	
Translation Initiation Complex	EIF3G, EIF3A, EIF3D, EIF3I, EIF3K, EIF3M, EIF3B, EIF3H, EIF3E, EIF3L	
Transport Of Fatty Acids	APOD, LCN12, LCN15, LCN9, SLC27A1, SLC27A4, SLC27A6	
Tubulin	TUBA3C, TBCC, TBCD, TUBA4B, TUBA8, TUBAL3, TUBA1A, TUBB4B, ARL2, TUBA1B	
Unfolded Protein Response	CXXC1, DNAJB11, EIF2S3, KHSRP, MBTPS1, SHC1, TATDN2, TLN1, TSPYL2, YIF1A	
V-ATPase	ATP6V1A, ATP6V, ATP6V1D, ATP6V1E1, ATP6V1F, ATP6V1H	

🗿 Recursion

Masked Image input

Difference with original image

Reconstruction loss @ Layer 0

Figure 3: Block-wise validation set **linear probe results** comparing ViT models pretrained on cell microscopy images (left) versus natural images (right). (a) 1139-class RxRx1 SiRNA knockdown classification (Sypetkowski et al., 2023); (b) 40-class Anax functional gene group classification on HUVEC cell images from RxRx3 CRISPR knockouts (Fay et al., 2023).

RXRx1: A DATASET FOR EVALUATING EXPERIMENTAL BATCH CORRECTION METHODS

Final takeaways

- Curated microscopy data = awesome
- Nearly all SSL ViTs we evaluate (MAEs and Dino-v2 imagenet baselines) are better at intermediate layers
- Linear separability on small datasets strongly correlates to performance at the whole-genome scale and transfer to new datasets for these SSL models
- Scaled MAE to 1.9 billion parameters is SOTA across variety of newly evaluated benchmarks

cursion

Table 2: Biological relationship recall benchmarks at 0.05-0.95 cosine threshold on public JUMP-CP image data (Chandrasekaran et al., 2023) generated by completely different labs and assay protocols compared to the data used for pretraining. Each result has a standard deviation $\leq \pm$.0023, and spans nearly 8,000 gene-knockouts and are computed after applying PCA with center-scaling for embedding post-processing alignment.

Questions?

kian.kd@recursion.com oren.kraus@recursion.com info@rxrx.ai