A Large Encoder–Decoder Polymer-Based Foundation Model

Eduardo Soares¹, Nathaniel H. Park², Emilo Vital Brazil¹, Victor Shirasuna³

¹IBM Research Brazil, Av. República do Chile, 330 Centro, Rio de Janeiro, RJ, 2 ²IBM Research Almaden, 650 Harry Rd, San Jose, CA, 95120

³IBM Research Brazil, Rua Tutóia, 1157 Vila Mariana, São Paulo, SP 04007-900

The development and employment of generalizable foundation models is imperative for the accelerated development of new, highperformance polymeric materials. Few models to date have been demonstrated to be adept at prediction tasks across multiple property classes and polymer types. Here we demonstrate the capabilities of a new polymer foundation model trained on a new, serialized polymer graph (SPG) representation across numerous property prediction tasks.

Challenges with Polymer Data

- Statistical nature of polymers and properties
- Homopolymers and simple co-polymers dominate most available datasets
- Difficulty in represent microstructure, tacticity, and complex topologies
- Coacervates, mixed micelles, composites and other higher order structures are not well captured by existing representation systems

Polymer Data Representation

Copolymer Representation

AB Block Copolymer CO[*:1];0=C([*:2])OCCCO[*:3];0=C([*:4])C(C)O[*:5]; 1->2;3->2;3->4;5->4

Polymer Formulations, Blends, & Mixtures

Polymer Component

Salt Component

Statistical Copolymer CO[***:1**];O=C([***:2**])OCCCO[***:3**];O=C([***:4**])C(C)O[***:5**];

1->2;3->2;3->4;5->4;5->2

Polymer Electrolyte Formulation [*:1]N=P([*:2])(0CC0CC0C)0CC0CC0C;2->1;0=S([N-]S(=0)(C(F)(F)F)=0)(C(F)(F)F)=0.[Li+]

Experiments

Benchmarking Dataset Performance

Dataset	Source	Metric	SOTA	SPG-SMI
Chain Bandgap	DFT	RMSE (↓)	0.44	0.49
Bulk Bandgap	DFT	RMSE (↓)	0.52	0.32
Electron Affinity	DFT	RMSE (↓)	0.28	0.29
Dielectric Constant	DFT	RMSE (↓)	0.52	0.38
Refractive Index	Exp.	RMSE (↓)	0.031	0.021
Conductivity–I	Exp.	MAE (↓)	1.00	0.89
Conductivity-II	Exp.	RMSE (↓)	0.61	0.61
CO ₂ Permeability	Exp.	MAE (↓)	0.29	0.29
CH₄ Permeability	Exp.	MAE (↓)	0.37	0.35
N ₂ Permeability	Exp.	MAE (↓)	0.38	0.31
CO ₂ /CH ₄ Selectivity	Exp.	MAE (↓)	5.34	4.71
CO ₂ /N ₂ Selectivity	Exp.	MAE (↓)	4.14	3.89
T _g -I (Polyimides)	Exp. & Syn.	MAE (↓)	24.4	9.56
Tg-II (Homopolymers)	Exp.	RMSE (↓)	19.4	27.7
T _d (50%)	Simulated	$R^{2}(\uparrow)$	0.92	0.96

References

 Park, N. H. et al. Artificial Intelligence Driven Design of Catalysts and Materials for Ring Opening Polymerization Using a Domain-Specific Language. Nat Commun 2023, 14 (1), 3686

Polymer Foundation Model

Model Architecture

Base Model Parameters

Hyperparameter	Value		
Hidden Size	768		
Attention Heads	12		
Layers	12		
Dropout	0.2		
Normalization	LayerNorm		
Vocabulary Size	2993		
SMILES	91M		
Mol Tokens	4T		
Encoder Parameters	47M		
Decoder Parameters	242M		
Total Parameters	289M		

Polymer Model Pre-training

- 1M polymer pre-training dataset represented as SPG
- Pretraining done over 150 epochs with a batch size of 256
- Two loss functions for pretraining
 - Token embeddings
 Token reconstruction

Conclusions

- Evaluated new polymer foundation model on a variety of property prediction tasks
- Achieved state-of-the-art or near state-of-the-art performance on nearly all tasks