DeepOSets: Non-Autoregressive In-Context Learning of Operators

Shao-Ting Chiu^{1*} Junyuan Hong² Ulisses Braga-Neto¹

¹Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX ²Institute for Foundations of Machine Learning, University of Texas, Austin, TX

Highlights

- DeepSets Operator Networks (DeepOSets) is the first non-autoregressive neural network architecture for in-context operator learning.
- DeepOSets combines the powerful DeepSets and DeepONet architectures to perform operator learning across different numbers of in-context examples and noise levels with a permutation-invariance inductive bias.
- We show that **DeepOSets can learn classical least-squares linear regression** much more efficiently than a comparable transformer-based approach.
- DeepOSets is parameter efficient, fast to train, and robust to noise. It is also more accurate than the transformer approach under noisy conditions.

Introduction

- In-context learning (ICL) [1] refers to the ability of a pre-trained machine learning model to learn from examples in a user prompt without further training.
- In the context of operator learning, ICL is the ability of a pre-trained neural operator to learn a new operator from examples in the prompt.
- Auto-regressive models, typically based on the transformer architecture, abound in ICL due to its success in natural language processing (NLP).
- However, auto-regressive transformers are memory-intensive and computationally-intensive both at training and inference time.

DeepOSets is more accurate than a Tranformer [4] in low dimension or high noise.

Janossy pooling is used to consider permutations of k-tuples over the N examples. The case k = 1 is the baseline DeepOSets.

- Furthermore, in operator learning, the examples in the prompt do not have an auto-regressive structure as in NLP, but instead are **permutation invariant**.
- Thus, we propose DeepOSets, an efficient non-autoregressive alternative for ICL of operators, which combines DeepONets [2] for operator learning with DeepSets [3] to allow prompts of different sizes with a permutation-invariance inductive bias.

Methods

Prompt for In-Context Learning

DeepOSets Architecture

Figure 1. DeepOSets architecture for in-context learning of supervised learning operators.

Figure 3. Linear regression results in d = 1 dimensions.

Regression Problems	Transformer[4]	DeepOSets	DeepOSets (k=2)		
1 dimension					
Linear Regression ($\sigma^2 = 0.0$)	6.744e-04	1.548e-04	2.710e-03		
Linear Regression ($\sigma^2=0.04$)	6.454e-03	1.450e-03	4.759e-03		
Linear Regression ($\sigma^2=0.2$)	1.917e-01	3.158e-02	4.479e-02		
Linear Regression ($\sigma^2 = 2.0$)	6.692	1.113	9.622e-01		
# of Parameters	22M	71151	84296		
5 dimensions					
Linear Regression ($\sigma^2 = 0.0$)	7.509e-02	1.642	5.221e-01		
Linear Regression ($\sigma^2=0.04$)	1.379e-01	1.611	5.462e-01		
Linear Regression ($\sigma^2=0.2$)	1.502	1.609	6.716e-01		
Linear Regression ($\sigma^2=2.0$)	3.172e+01	4.361	6.837		
# of Parameters	22M	568561	1942411		

Table 1. Mean square error (MSE) and number of parameters benchmark with 30 test functions and6 in-context examples.

DeepOSets is faster and lighter than a Transformer [4].

	Transformer[4]	DeepOSets	DeepOSets (k=2)
Parameters	22M	72K	84K
Training time	3 hours	9 min	8min
Complexity for first x_{query} on n examples	$O(n^2)$	O(n)	$O(n^2)$
Complexity for second x_{query} on n examples	$O(n^2)$	O(1)	O(1)
Memory complexity for n examples	$O(n^2)$	O(1)	O(1)
Inference time per query ($n = 10$)	7.11 ms	0.087 ms	0.18ms
Test MSE	0.132	1.12e-2	2.89e-2

Table 2. Benchmark with d = 1, n = 13, $\sigma^2 = 0.2$ where n is the training sample size for DeepOSets.

DeepOSets for Multiple PDE Operator Learning

Results

DeepOSets meta-learns noisy linear regression after training with noiseless data.

Noiseless training data from function set $\{f | f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}, \mathbf{w} \in \mathbb{R}^d\}$ where $\mathbf{w} \sim \mathcal{N}(0, \mathbf{I}_d)$ [4]. Linear regression on noisy prompt $\tilde{f}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2)$.

Figure 2. In-Context learn 1D linear regression from noisy examples ($\sigma^2 = 0.1$).

- The black dots (•) represent 10 noisy in-context examples.
- Blue line (-) represents ordinary least squares regression
- Red line (–)

denotes DeepOSets prediction based on noisy examples.

Acknowledgements

Chiu and Braga-Neto were supported by NSF Award CCF-2225507.

References

- T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, *et al.*, "Language models are few-shot learners," *arXiv preprint arXiv:2005.14165*, vol. 1, 2020.
- [2] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators," *Nature Machine Intelligence*, vol. 3, pp. 218–229, Mar. 2021.
- [3] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, "Deep sets," Advances in neural information processing systems, vol. 30, 2017.
- [4] S. Garg, D. Tsipras, P. Liang, and G. Valiant, "What Can Transformers Learn In-Context? A Case Study of Simple Function Classes," *Advances in Neural Information Processing Systems*, vol. 35, 2022.

Submission No. 46

NeurIPS 2024 Workshop Foundation Models for Science

*stchiu@tamu.edu