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Introduction: The Higgs Uncertainty Challenge 

https://arxiv.org/abs/2001.08361

The Goal:  

1) Measure the signal strength  

2) Give correct and small 68% CI on the measurement 

μ =
Observed Higgs
Expected Higgs

The signal process is  

Data: 28 Input Features  

H → ττ



Introduction: The Higgs Uncertainty Challenge 
Six nuances parameters   

Distorts the 28 features in a unknown nonlinear way

Method is evaluated by: 

• Running 100 pseudo-experiments with 
different nuisance parameters 

• On 10 different values of  

CI must be correct ~68% of the time and are rewarded 
with smaller intervals 

μ = [.1, 3]



First Iteration: A Bayesian Approach 

𝒫(μ |{x}) ∝ 𝒫({x} |μ, θ) =
n

∏
j

𝒫(xi |μ, θ)

=
N

∏
i

( μ
N

𝒫(xs
i |θ) +

N − μ
N

𝒫(xbg
i |θ))

*Here* 
 μ = Observed Higgs

How do we 
estimate these? 



First Iteration: Normalizing Flows  

𝒫(xi)
∼ 𝒩(0,1)

𝒫(xbg
i )

𝒫(xs
i )

OR 

ℒ(θ) = − 𝔼 [log pZ (fθ(x)) + log det ( ∂fθ
∂x ) ]

fθ(x)



First Iteration: One Problem   
𝒫({x} |μ, θ) =

n

∏
j

𝒫(xi |μ, θ) =
N

∏
i

( μ
N

𝒫(xs
i |θ) +

N − μ
N

𝒫(xbg
i |θ))

Not Enough 

Information in the NF- 

Likelihood! 



First Iteration: Adversarial Loss  

ℒ(θ) = − 𝔼 [log pZ (fθ(x)) + log det ( ∂fθ
∂x ) ]

ℒ(θ) = − 𝔼 [c ⋅ (log pZ (fθ(x)) + log det ( ∂fθ
∂x ) ) − log pZ (fθ(y)) − log det ( ∂fθ

∂y ) ]

For Example: x = signal events, y = background events 



First Iteration: One Problem   
𝒫({x} |μ, θ) =

n

∏
j

𝒫(xi |μ, θ) =
N

∏
i

( μ
N

𝒫(xs
i |θ) +

N − μ
N

𝒫(xbg
i |θ))

Peaks at close to the right 

value of mu!  

 

 

μreal ≈ 0.0026

μpeak ≈ 0.002
*Here* 

 μ =
Observed Higgs

N



First Iteration: Not Sufficient   
𝒫({x} |μ, θ) =

n

∏
j

𝒫(xi |μ, θ) =
N

∏
i

( μ
N

𝒫(xs
i |θ) +

N − μ
N

𝒫(xbg
i |θ))

Issue: Not robust to: 
1) Systematics 

• Very incorrect predictions   
2) Changes in  

• “Sticky” peak and no sensitivity for 
 

μ

μ < .5



02
An Overview of the Final Iteration, 

involving NF Ensembles, Classifiers, and 
Estimating Nuisance Parameters  

The Solution



Final Iteration: Back to Classifiers   
Idea: Use Ensemble of NF Likelihoods of as input to a simple DNN classifier 

NF

NF

NF

NF

NF

NF

Event  Psig(x)

Event

Intuition: Each NF reacts to the systemics 
differently in a way the DNN can learn. 



Final Iteration: Classifier Training
Systematic Robust Training: 

Train the same DNN with event data perturbed with a wide variety of nuisance 

parameters. 

NF

NF

NF

NF

NF

NF

Event
 Psig(x)

Event

Event

Event

Event

{NP1}

{NP2}

{NP3}

{NP4}

ℒ = −
1
N

N

∑
i=1

[yi ⋅ log( ̂yi) + (1 − yi) ⋅ log(1 − ̂yi)]
Loss: Binary Cross Entropy  



Final Iteration: Binned Analysis 

P({fi} ∣ {ki}) ∝ ℒ({ki} ∣ {fi}) =
N

∏
i=1

( fiSi + bi)kie−( fiSi+bi)

ki!

The Poisson Likelihood is then given by: 

Let  be the true counts of events in bin :ki i

E[ki] = fi ⋅ E[Si] + bi

μ ≡
∑i fi ⋅ 𝔼[Si])

∑i (bi + fi ⋅ 𝔼[Si])

Then:

*Here* 

 μ =
Observed Higgs

N



Final Iteration: Parameter Estimation  
To deal with the “worst” nuisance parameter (jes) we 

can do the same procedure but compute instead: 

P({fi} ∣ {ki}, θ) ∝ ℒ({ki} ∣ {fi}, θ) =
N

∏
i=1

( fiE[Si |θ] + bi)kie−( fiE[Si|θ]+bi)

ki!
⋅ P(θ)

Prior on  
Nuances Parameters

Do MLE on both  and !θ fi



Final Iteration: Neyman Construction  

For Error Bars we use the Neyman Construction 

1) For each value of real mu compute estimate 

~100 time with a different draw of NP 

2) With mean and std of the estimates: 

1) Apply a Bias Correction to the mean 

2) And use std as error bar estimate for a given 

estimate of mu 



03
Empirical Results comparing 

theoretical results with empirical reality 

Uncertainty 
Quantifying  

From Scaling Laws



Uncertainty Quantification: Ensemble Uncertainty  



Uncertainty Quantification: Ensemble Uncertainty  

Central Limit 
Theorem

Our Goal: Compute the Variance of an Ensembles 
Prediction without training an ensemble  



Neural Network Scaling Laws

https://arxiv.org/abs/2001.08361



Neural Network Scaling Laws

Question: How does Ensemble Variance scale with 
Training Dataset Size? Can we predict this scaling 

with physics-inspired theory?  

Less Training Data



Physics-Inspired Theory: The NTK  

ΔℒA = − η∑
μ,ν

λμν
∂ℒA

∂θμ

∂ℒA

∂θν
+ O(η2),θμ(t + 1) = θμ(t) − η

∂ℒA

∂θμ
θμ=θμ(t)

ΔℒA = − η
n(L)

∑
i1,i2=1

∑
α̃1,α̃2∈𝒜 [ ∂ℒA

∂zi1;α̃1

∂ℒA

∂zi2;α̃2
] ∑

μ,ν

λμν
dzi1;α̃1

dθμ

dzi2;α̃2

dθν
.

Taylor 
Expansion 

Chain Rule

The NTK! The Error Factor 

∂ℒA

∂zi;α̃
= zi(xα̃; θ) − yi;α̃

NTK = Neural Tangent Kernel



Physics-Inspired Theory: The NTK  

The NTK is the main driver of the 
function-approximation dynamics.* 

Θi1i2;α̃1α̃2
≡ ∑

μ,ν

λμν
dzi1;α̃1

dθμ

dzi2;α̃2

dθν

Thus, by understanding the NTK and how it evolves we can directly understand the 
behavior of NNs  

* for DNNs trained with full batch gradient descent 



Physics-Inspired Theory: The NTK Perturbation 
NTK dynamics are possible to understand perturbatively and analytically 

Θ(ℓ)
α1α2

= Θ{0}(ℓ)
α1α2

+
1
nℓ

Θ{1}(ℓ)
α1α2

+
1
n2

ℓ
Θ{2}(ℓ)

α1α2
+ O ( 1

n3
ℓ )

Perturbing in the width of the network 

Infinte Width Finite Width Corrections 



Physics-Inspired Theory: RG-Flow of the NTK 

Sfull(z(1), …, z(L)) =
L

∑
ℓ=1

SM(z(ℓ)) +
L−1

∑
ℓ=1

SI(z(ℓ+1) |z(ℓ))

e−Seff(z(L)) = ∫ [
L−1

∏
ℓ=1

dz(ℓ)] e−Sfull(z(1),…,z(L))

Compute effective action of a layer  
by marginalizing over all pre-

activations in layer  

ℓ

ℓ − 1

Recursively Repeat through each layer until final layer 
action is computed! This is RG Flow in an DNN. 

e−Seff(z(ℓ))Θ{0}(ℓ)
α1α2

How to compute the infinite width NTK? —> RG Flow 



Physics-Inspired Theory: Infinite Width Predictions  

m∞
i;β ≡ 𝔼 [z(L)

i;β (T)] = ∑
α̃1,α̃2∈𝒜

Θ(L)
βα̃1

(Θ(L)
α̃1α̃2

)−1yi;α̃2

Cov [z(L)
i1;β1

(T), z(L)
i2;β2

(T)] = 𝔼 [z(L)
i1;β1

(T)z(L)
i2;β2

(T)] − m∞
i1;β1

m∞
i2;β2

= δi1i2K
(L)
β1β2

− ∑
α̃1,α̃2∈𝒜

Θ(L)
β1α̃1

K(L)
α̃1α̃2

Θ(L)
α̃2β2

− ∑
α̃1,α̃2∈𝒜

Θ(L)
β2α̃1

K(L)
α̃1α̃2

Θ(L)
α̃2β1

+ ∑
α̃1,α̃2,α̃3,α̃4∈𝒜

Θ(L)
β1α̃1

Θ(L)
α̃1α̃2

K(L)
α̃2α̃3

Θ(L)
α̃3α̃4

Θ(L)
α̃4β2

.

With the Final Layer NTK, we can compute the “end of training” prediction:  

And the variance on that prediction: 



Physics-Inspired Theory: Infinite Width Predictions  

https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf 



04
Empirical Results Comparing Theoretical 

Results with Empirical Reality 

Empirical 
Results



Empirical Results: Infinite Width Predictions  

Are infinite width calculations predictive on real 
Machine Learning problems?

We test this by computing: 
1) Infinte Width Prediection  
2) A Trained Ensemble of DNNs (~150 networks)  

•    Width-30, Early Stopping, Full Batch Gradient Decent 

For a range of training set sizes

On three datasets: 
1) MNIST Image Classification  
2) CIFAR Image Classification  
3) A HEP Calorimeter Energy 

Regression Problem

https://link.springer.com/article/10.1140/epjc/s10052-020-8251-9



Empirical Results: Infinite Width Prediction Loss 

The mean test loss for a trained ensemble of DNNs and Infinite Width Networks 
for three datasets  



Empirical Results: Infinite Width Coefficient of Variation  

ϵℒ ≡
σℒ

μℒ

Suppose we introduce the 
Coefficient of Variation:

We find: 
1) DNN  flat with dataset size!  
2) Infinite width  asymptotes flat. 

ϵℒ

ϵℒ



Empirical Results: Infinite Width Prediction Loss 



Conclusion: Implications   

Implications of our work: 

1. We find that   is small (  )  

• We can assign  as the systematic uncertainty due to the DNN 

2.  is flat and similar to the infinite width value, thus one can estimate  by either: 

• Training an ensemble for small  (cheap) and extrapolate  value to larger  

• Compute Infinite Width Value after  asymptotes (very cheap)  

ϵℒ μℒ > σℒ

μℒ

ϵℒ ϵℒ

N𝒟 ϵℒ N𝒟

N𝒟



QUESTIONS?


