

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, OFFICE OF SCIENCE, OFFICE OF HIGH ENERGY PHYSICS, UNDER AWARD NUMBER DE-SC0023704.

ENSEMBLES AND **UNCERTAINTY OUANTIFICATION**

BRAHIM ELSHARKAWY

ABOUT ME

Undergrad at **Rice University**

Studied Physics, Applied Math, Philosophy

Second-Year Grad at University of Illinois at Urbana-Champaign

•Advisors: Prof. Yoni Kahn and Prof.Ben Hooberman

Research + Work:

- Two Research Projects **at CMS**
- Few Years of Interning as a **Research Geophysicist**
- **Physics for AI** work with Advisors
- Higgs Uncertainty Challenge

Physics Machine Learning

1. Higgs Uncertainty Challenge: Ensembles of Normalizing Flows, Systemic Uncertainty Robust Classifiers, Nuisance Parameters Estimation

2. Uncertainty Quantifying From Scaling Laws: Field Theory for NN,

Infinite Width NN, and NN Scaling Laws

BY THE END OF THE TALK

TABLE OF CONTENTS

01

02

Higgs Uncertainty Challenge

An Introduction to the Challenge, and the First Iteration

The Solution

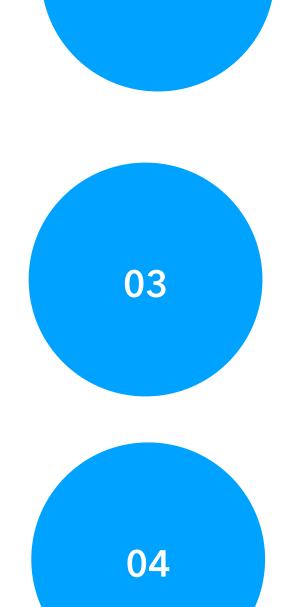
An Overview of the Final Iteration, involving NF Ensembles, Classifiers, and Estimating Nuisance Parameters

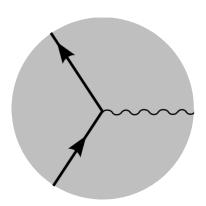
Uncertainty Quantifying From Scaling Laws

Physics for AI: How we can use field theory to predict NN behavior with Infinite Width Networks and Scaling Laws

Empirical Results

Empirical Results Comparing Theoretical Results with Empirical Reality





An Introduction to the Challenge, and the First Iteration

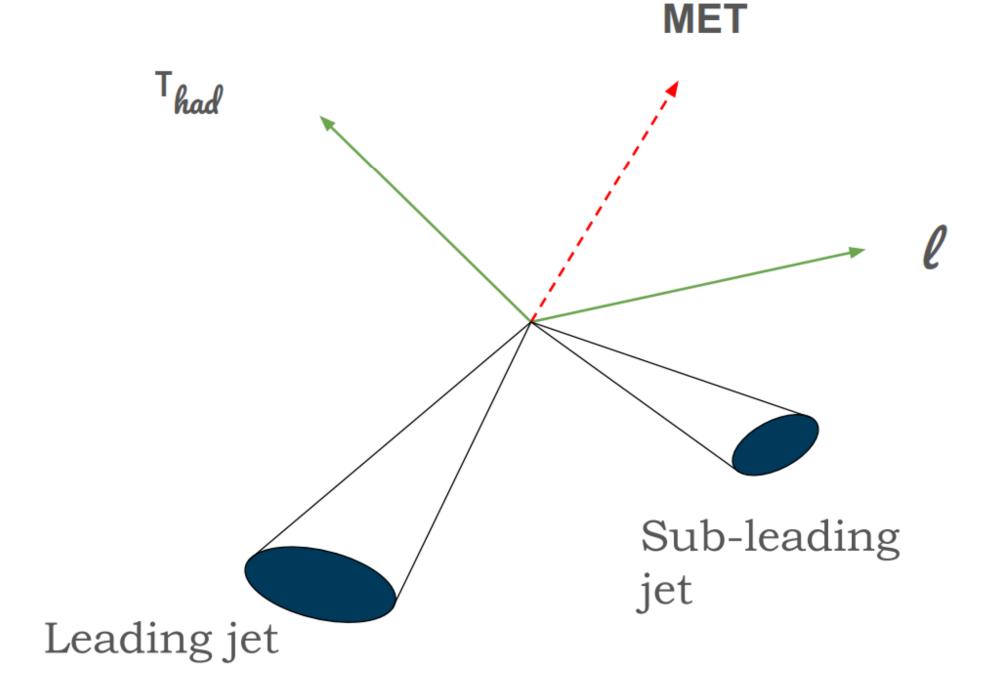
Higgs Uncertainty

Challenge

Introduction: The Higgs Uncertainty Challenge (The Goal:

1) **Measure** the signal strength $\mu = \frac{\text{Observed Higgs}}{\text{Expected Higgs}}$

2) Give correct and small 68% CI on the measurement



The **signal process** is $H \rightarrow \tau \tau$ Data: 28 Input Features

https://arxiv.org/abs/2001.08361

Introduction: The Higgs Uncertainty Challenge (

Variable	Mean	Sigma	Range
$lpha_{ ext{tes}}$	1.	0.01	[0.9, 1.1]
$\alpha_{ m jes}$	1.	0.01	[0.9, 1.1]
$lpha_{ m soft_met}$	0.	3.	$[0., +\infty]$
$lpha_{ ext{ttbar_scale}}$	1.	0.25	$[0., +\infty]$
$lpha_{ m diboson_scale}$	1.	0.025	$[0., +\infty]$
$lpha_{ m bkg_scale}$	1.	0.01	$[0., +\infty]$

Six nuances parameters

Distorts the 28 features in a unknown nonlinear way

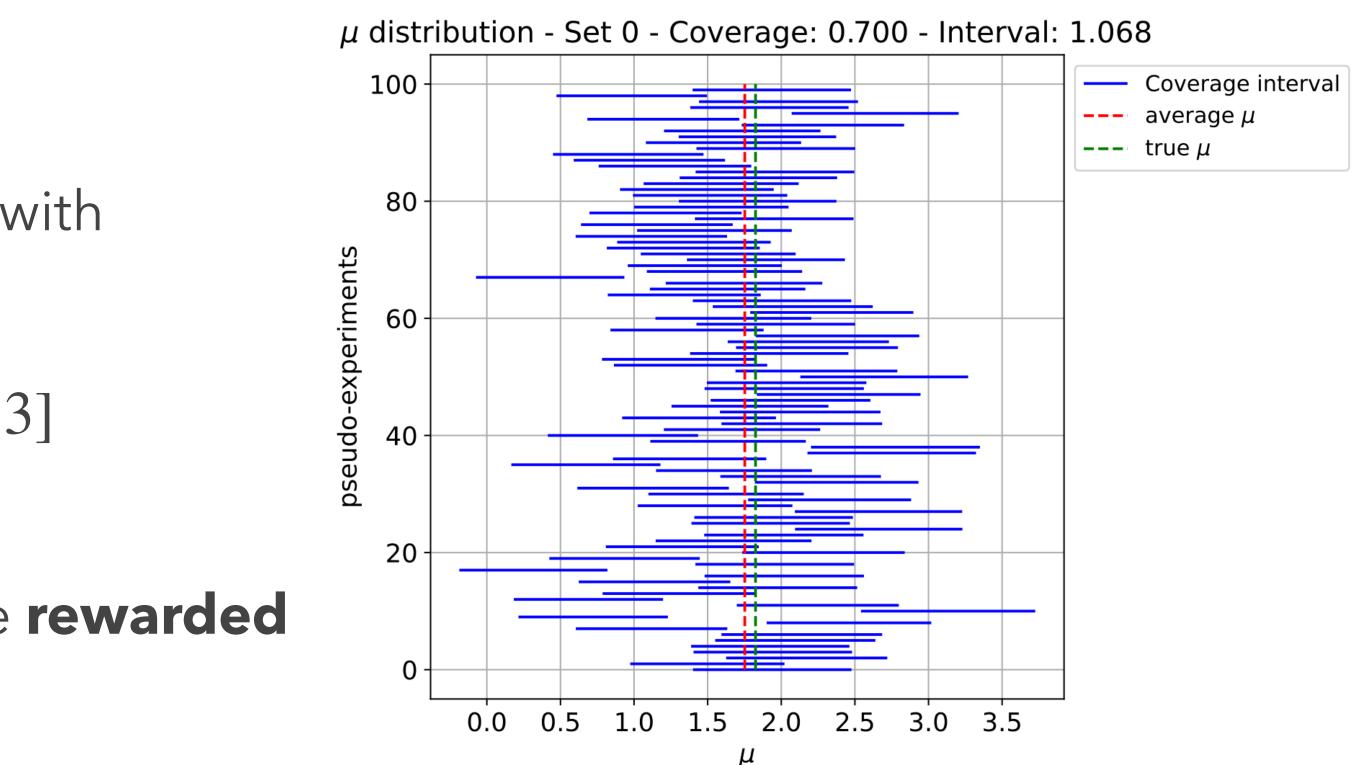
Method is evaluated by:

Running 100 pseudo-experiments with

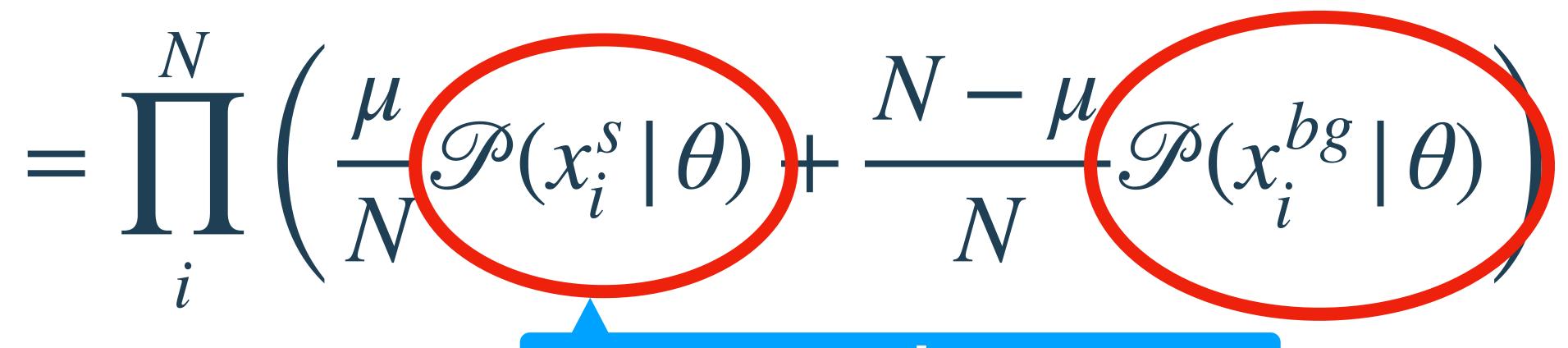
different nuisance parameters

• On 10 different values of $\mu = [.1, 3]$

CI must be correct ~68% of the time and are **rewarded** with smaller intervals



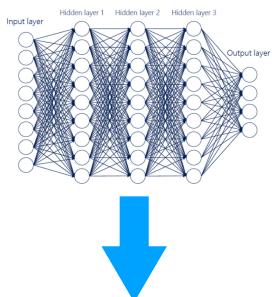
First Iteration: A Bayesian Approach (

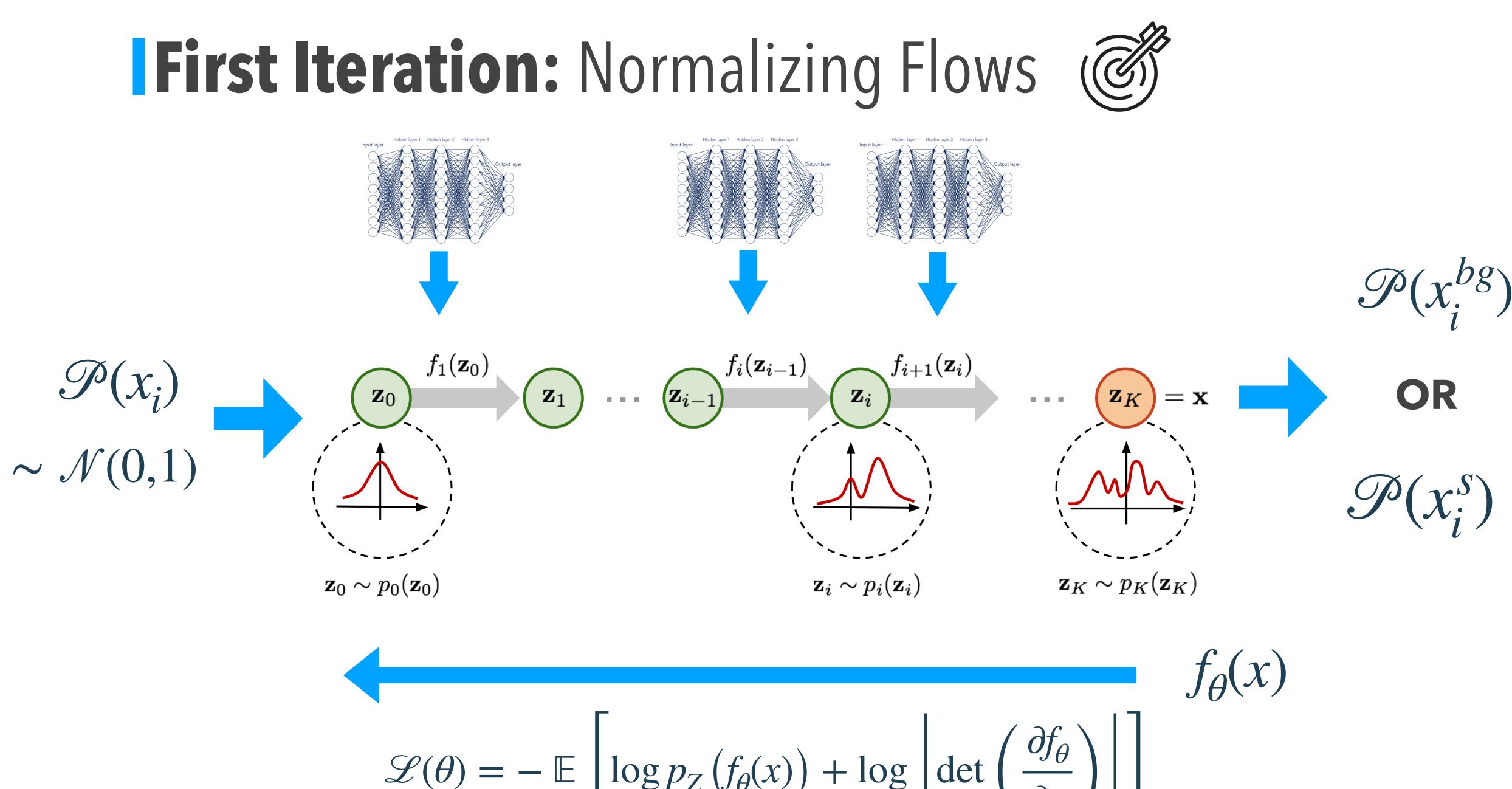


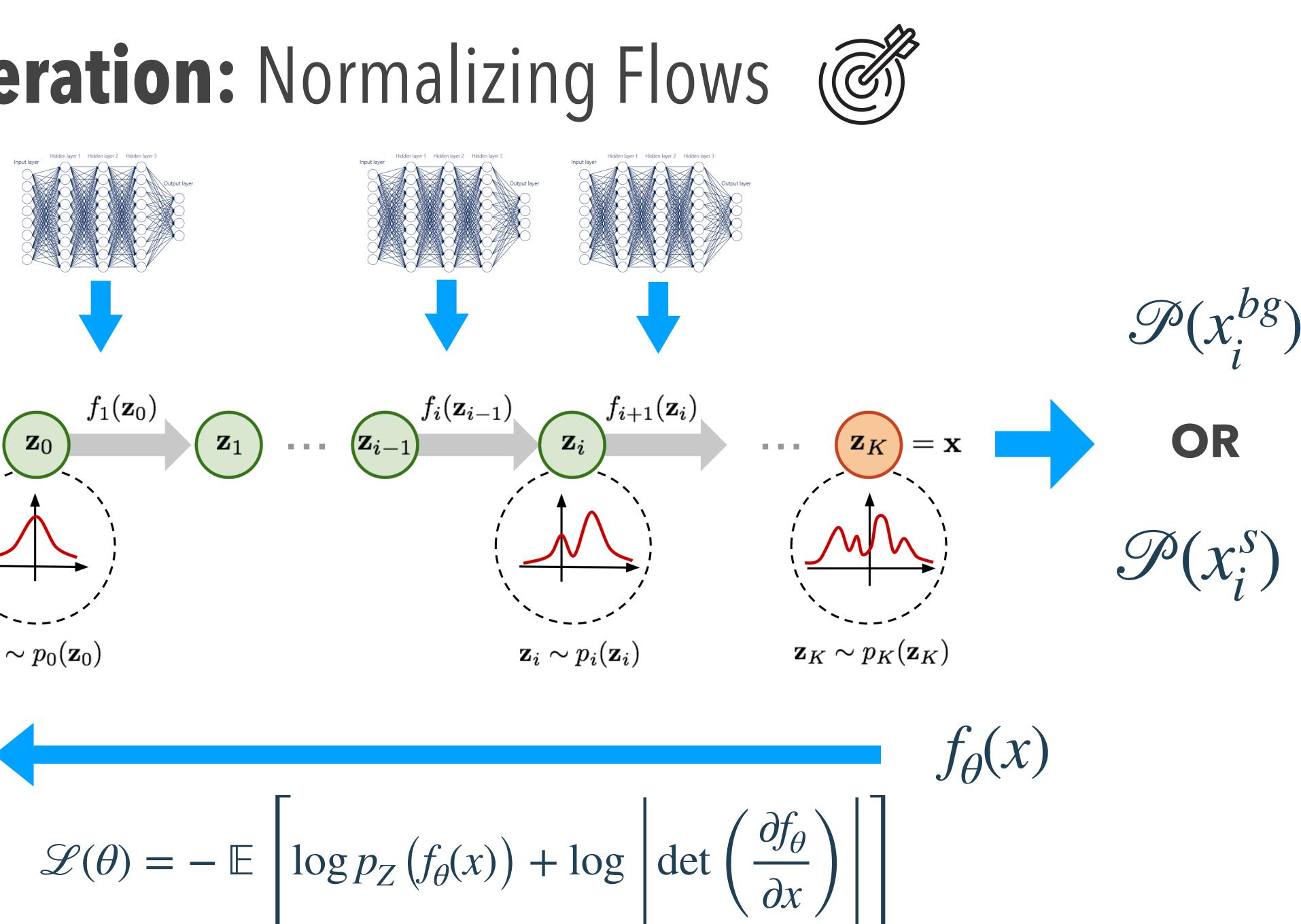
Here $\mu = Observed Higgs$

 $\mathcal{P}(\mu \,|\, \{x\}) \propto \mathcal{P}(\{x\} \,|\, \mu, \theta) = \prod \mathcal{P}(x_i \,|\, \mu, \theta)$

How do we estimate these?

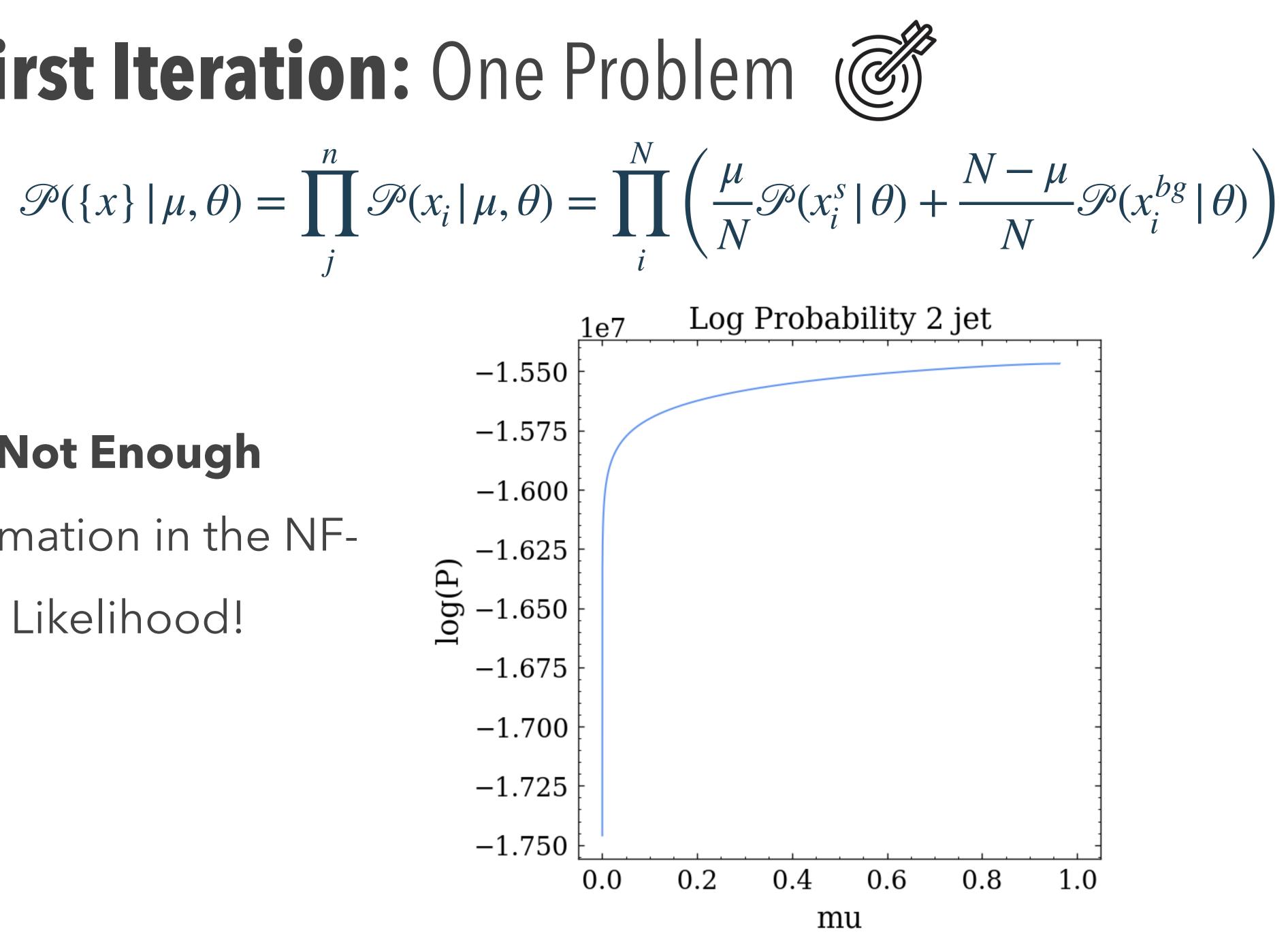


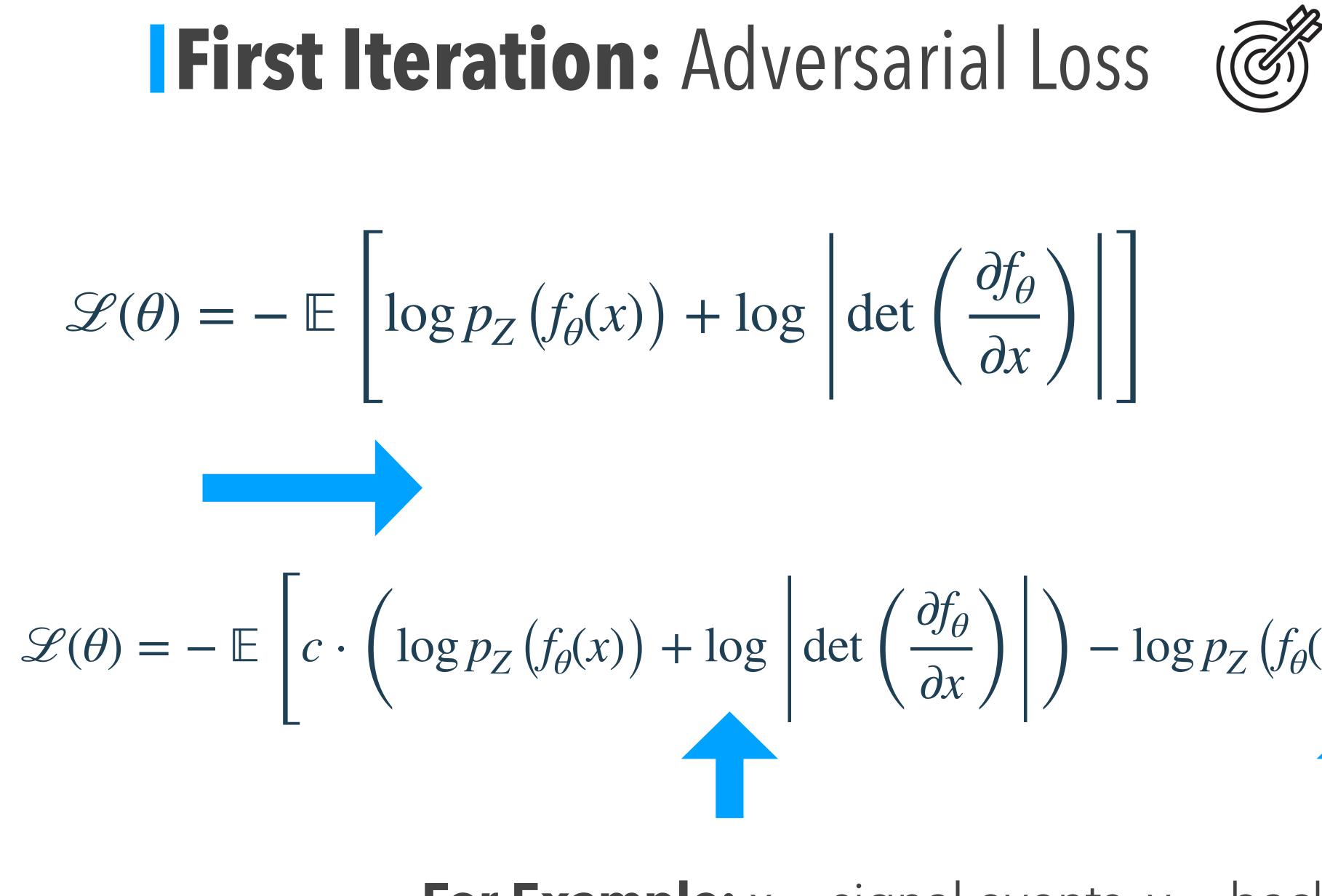




First Iteration: One Problem (-1.550-1.575Not Enough -1.600

- Information in the NF-Likelihood!
- -1.625
- og(P) -1.650
 - -1.675
 - -1.700
 - -1.725
 - -1.750



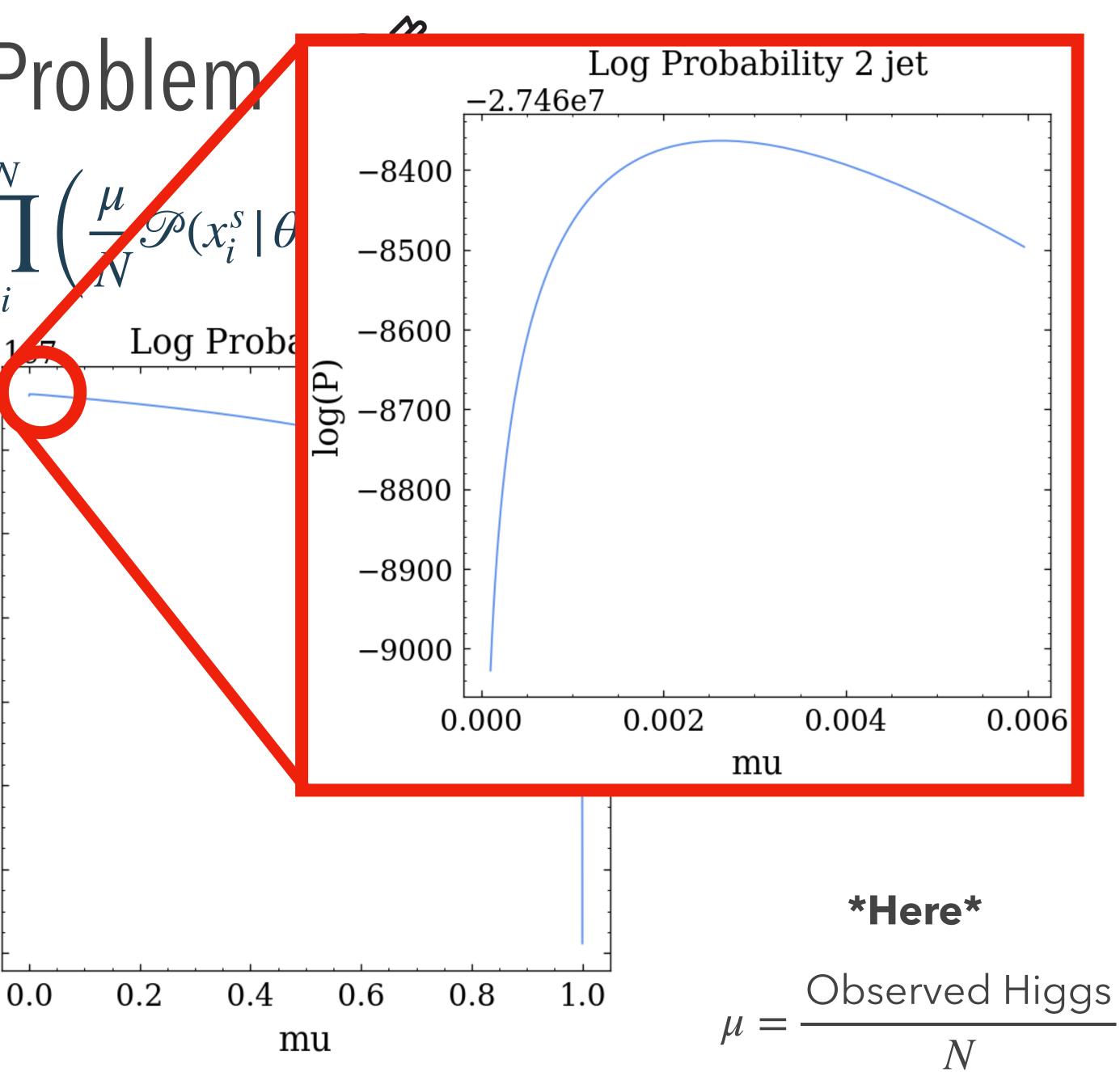


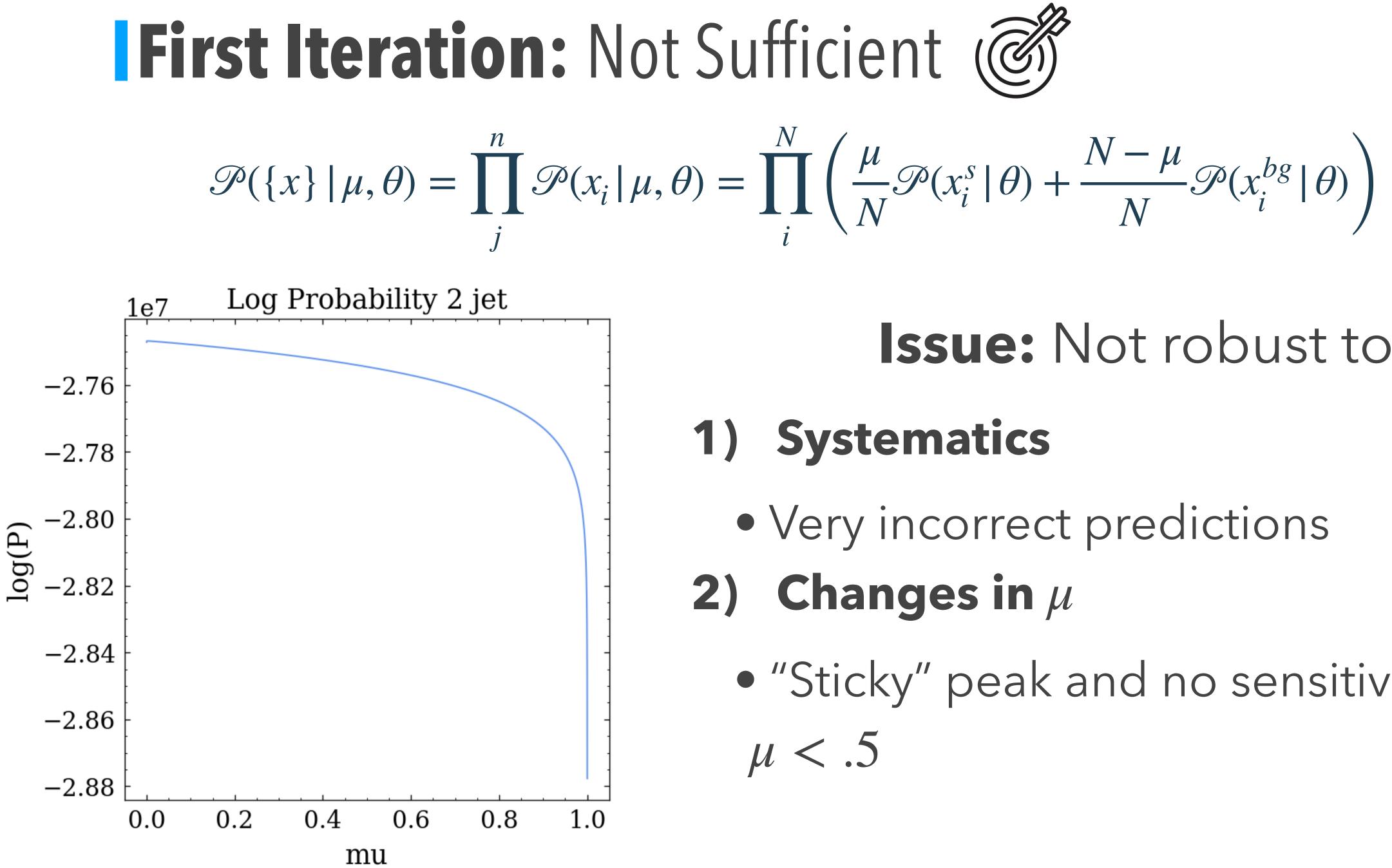
$$\left| \left(\frac{\partial f_{\theta}}{\partial x} \right) \right| \right) - \log p_Z \left(f_{\theta}(y) \right) - \log \left| \det \left(\frac{\partial f_{\theta}}{\partial y} \right) \right|$$

For Example: x = signal events, y = background events

First Iteration: One Problem $\mathcal{P}(\{x\} \mid \mu, \theta) = \prod_{i=1}^{n} \mathcal{P}(x_{i} \mid \mu, \theta) = \prod_{i=1}^{N} \left(\frac{\mu}{z_{i}} \mathcal{P}(x_{i}^{s} \mid \theta) \right)$ -2.76Peaks at close to the right -2.78value of mu! -2.80log(P) $\mu_{real} \approx 0.0026$ -2.82 $\mu_{peak} \approx 0.002$ -2.84-2.86

-2.88





Issue: Not robust to:

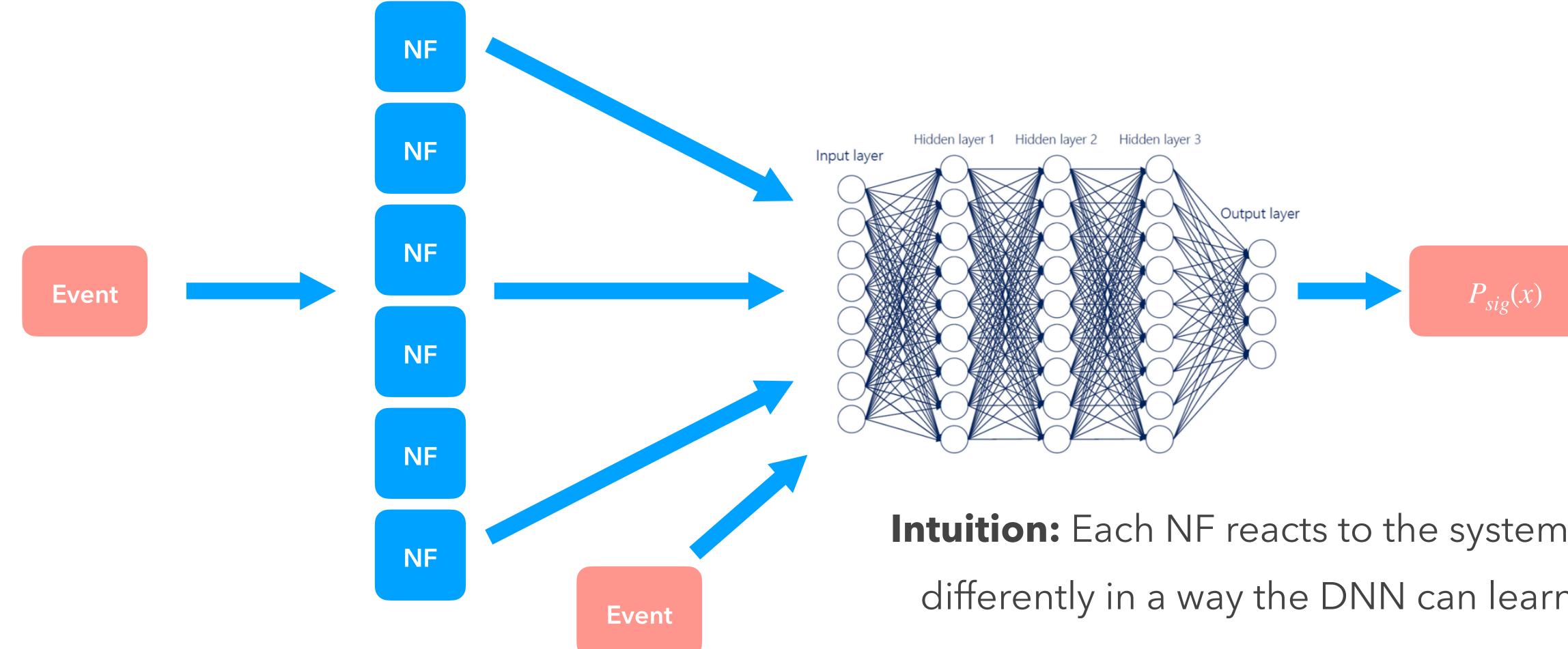
Very incorrect predictions

"Sticky" peak and no sensitivity for

The Solution

An Overview of the Final Iteration, involving NF Ensembles, Classifiers, and Estimating Nuisance Parameters

Final Iteration: Back to Classifiers dea: Use Ensemble of NF Likelihoods of as input to a simple DNN classifier



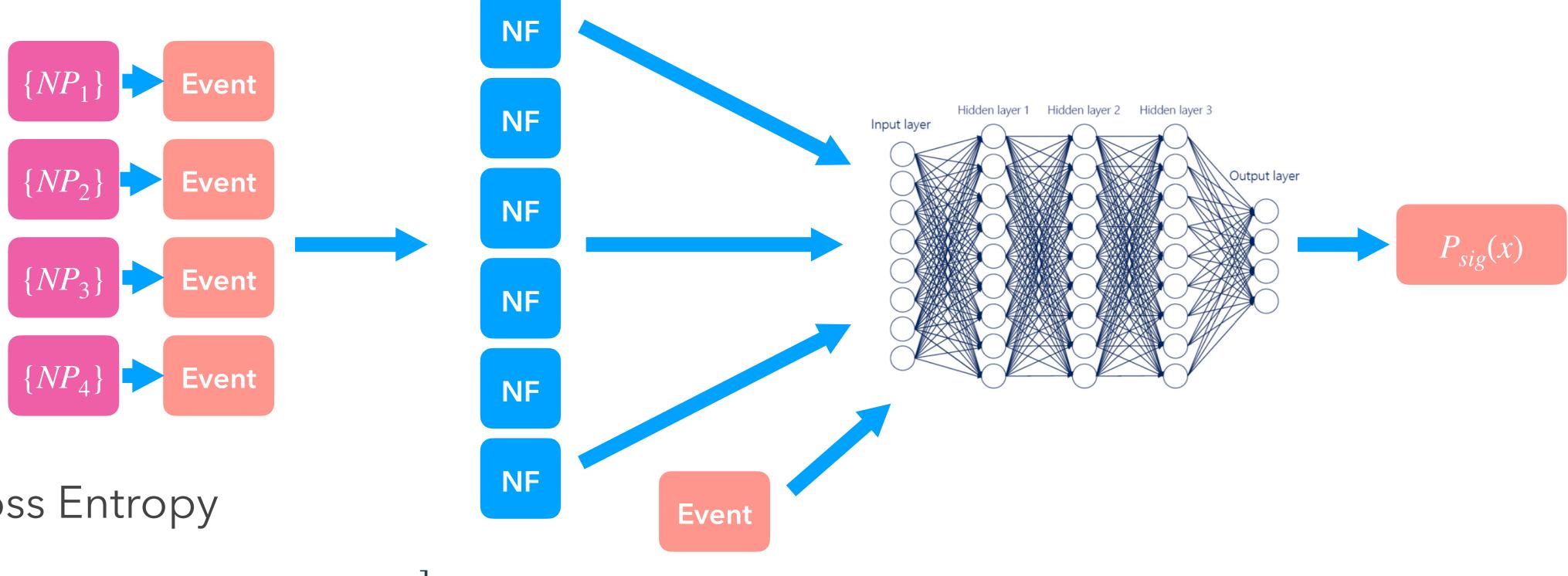
Intuition: Each NF reacts to the systemics differently in a way the DNN can learn.

Final Iteration: Classifier Training

Systematic Robust Training:

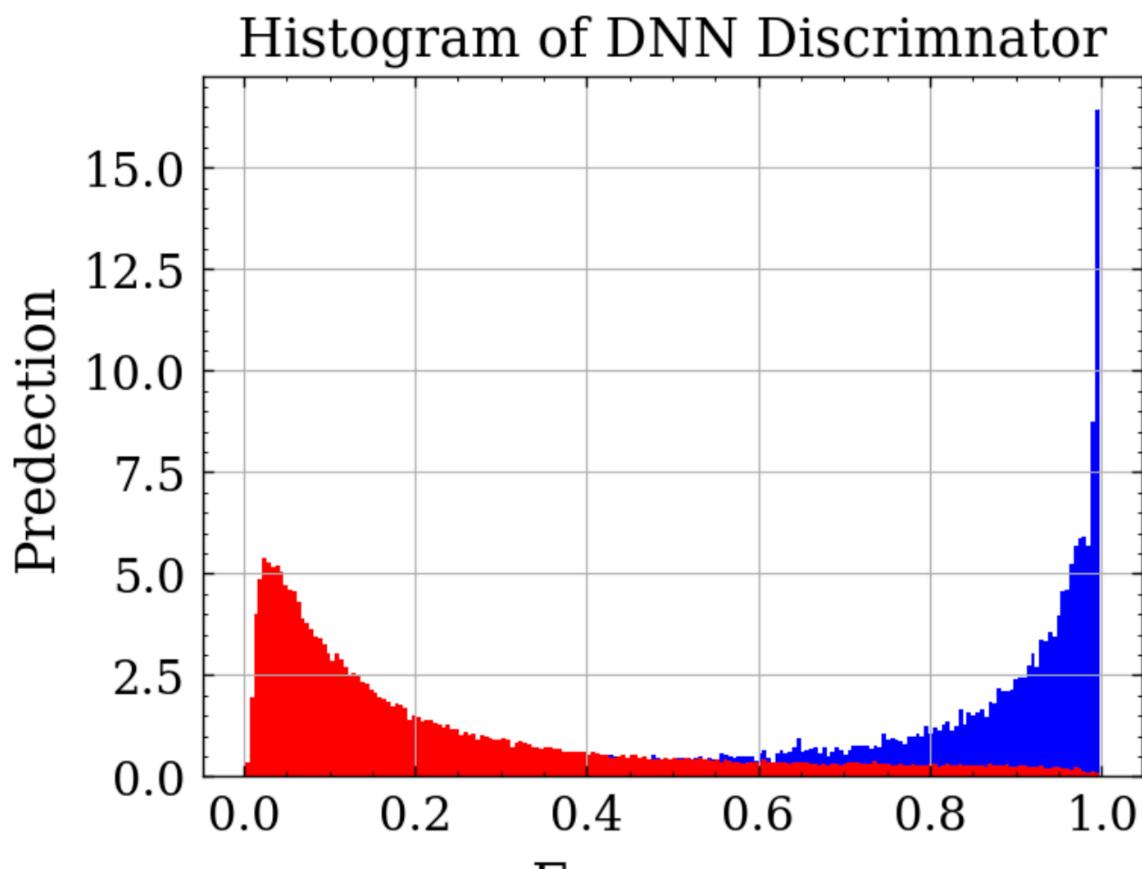
Train the same DNN with event data perturbed with a wide variety of nuisance

parameters.



Loss: Binary Cross Entropy $\mathscr{L} = -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \cdot \log(\hat{y}_i) + (1 - y_i) \cdot \log(1 - \hat{y}_i) \right]$

Final Iteration: Binned Analysis



Frequency

Here $\mu = \frac{\text{Observed Higgs}}{\mu}$ (\mathcal{O})

Let k_i be the true counts of events in bin *i*:

$E[k_i] = f_i \cdot \mathbf{E}[S_i] + b_i$

The **Poisson Likelihood** is then given by: $P(\{f_i\} \mid \{k_i\}) \propto \mathscr{L}(\{k_i\} \mid \{f_i\}) = \prod_{i=1}^N \frac{(f_i S_i + b_i)^{k_i} e^{-(f_i S_i + b_i)}}{k_i!}$ i=1

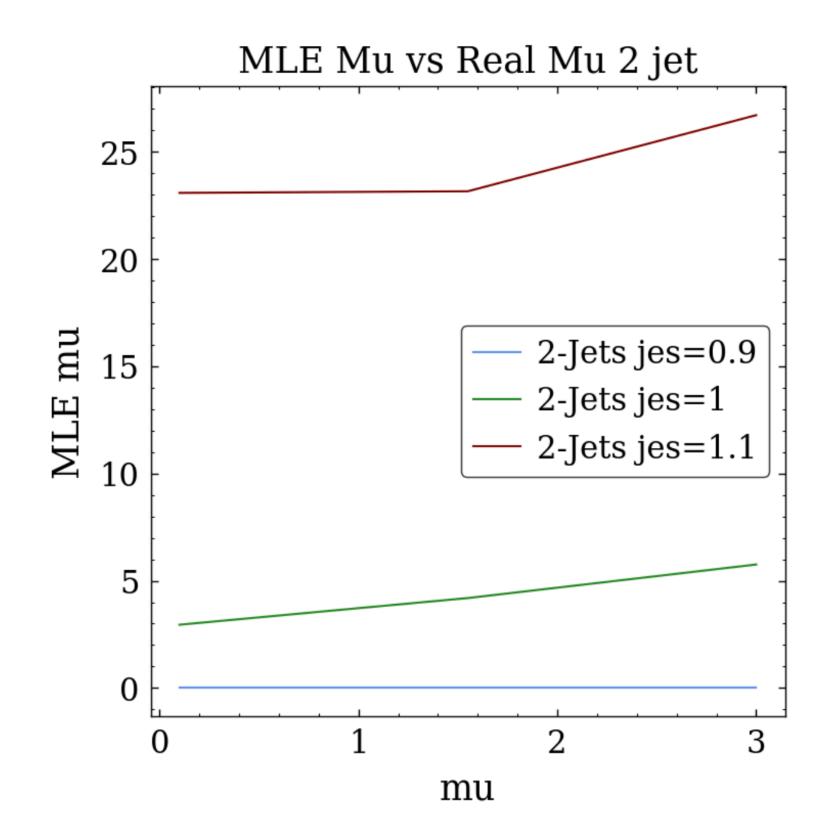
Then:

$$\mu \equiv \frac{\sum_{i} f_{i} \cdot \mathbb{E}[S_{i}])}{\sum_{i} (b_{i} + f_{i} \cdot \mathbb{E}[S_{i}])}$$

Final Iteration: Parameter Estimation (

To deal with the "worst" nuisance parameter (jes) we can do the same procedure but compute instead:

 $P(\lbrace f_i \rbrace \mid \lbrace k_i \rbrace, \theta) \propto \mathscr{L}(\lbrace k_i \rbrace \mid \lbrace f_i \rbrace, \theta) = \prod^N \frac{(f_i \mathbf{E}[S_i \mid \theta] + b_i)^{k_i} e^{-(f_i \mathbf{E}[S_i \mid \theta] + b_i)}}{\mathbf{I} \cdot \mathbf{I}}$ i=1

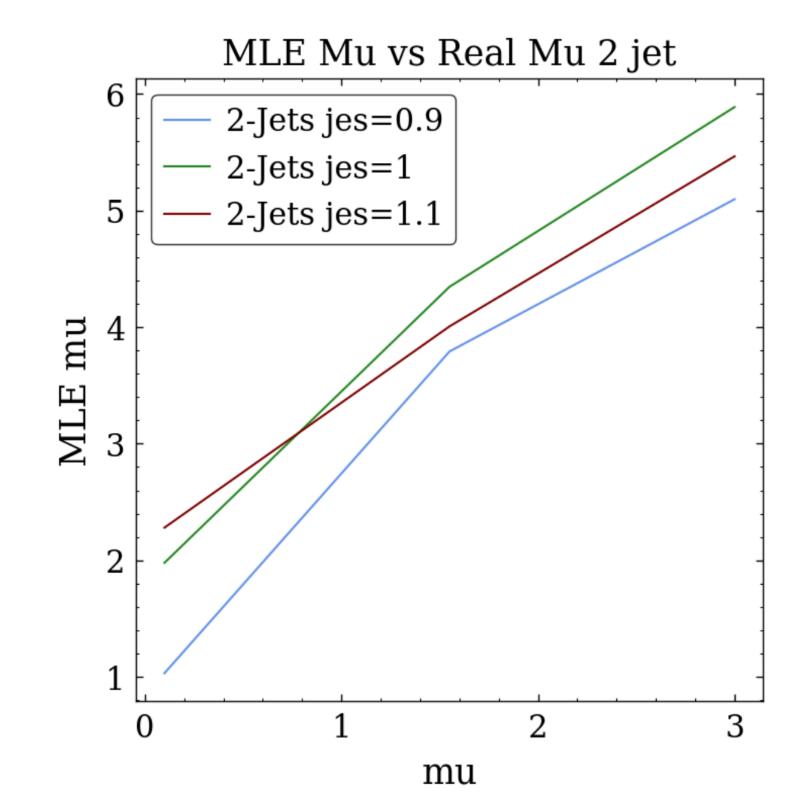


Do MLE on both θ and $f_i!$

 $P(\theta)$

Prior on

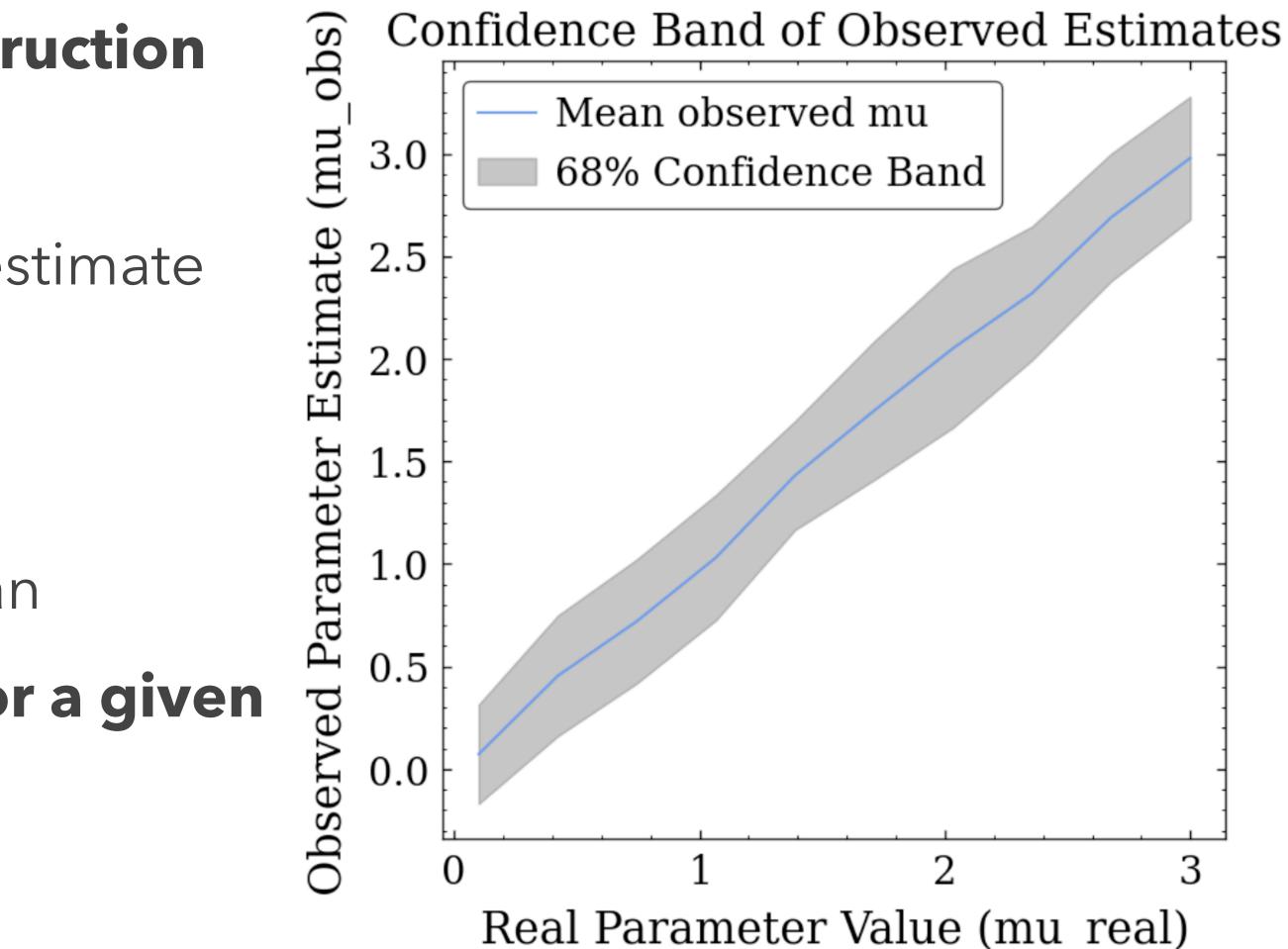
Nuances Parameters



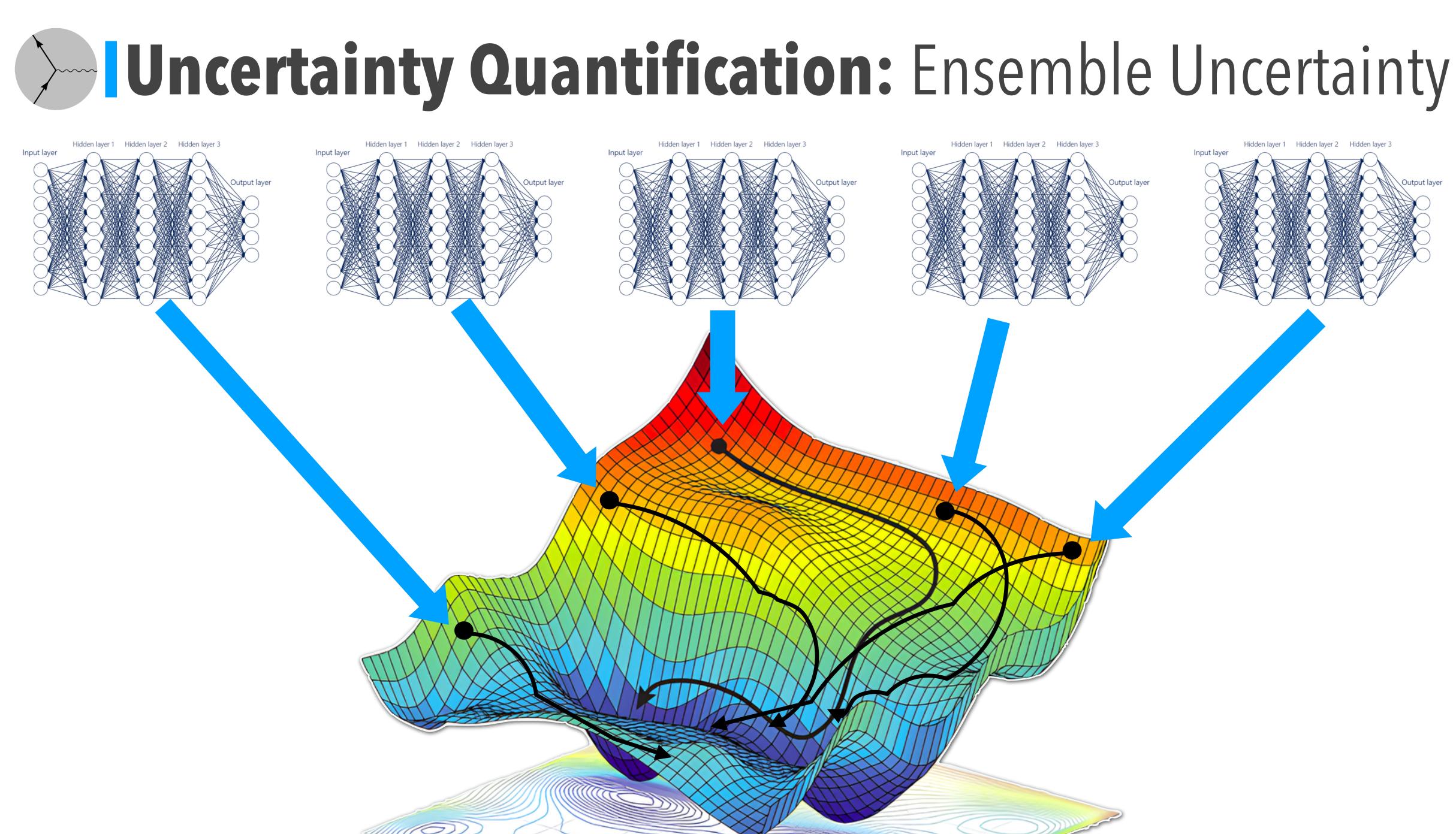
Final Iteration: Neyman Construction

For Error Bars we use the Neyman Construction

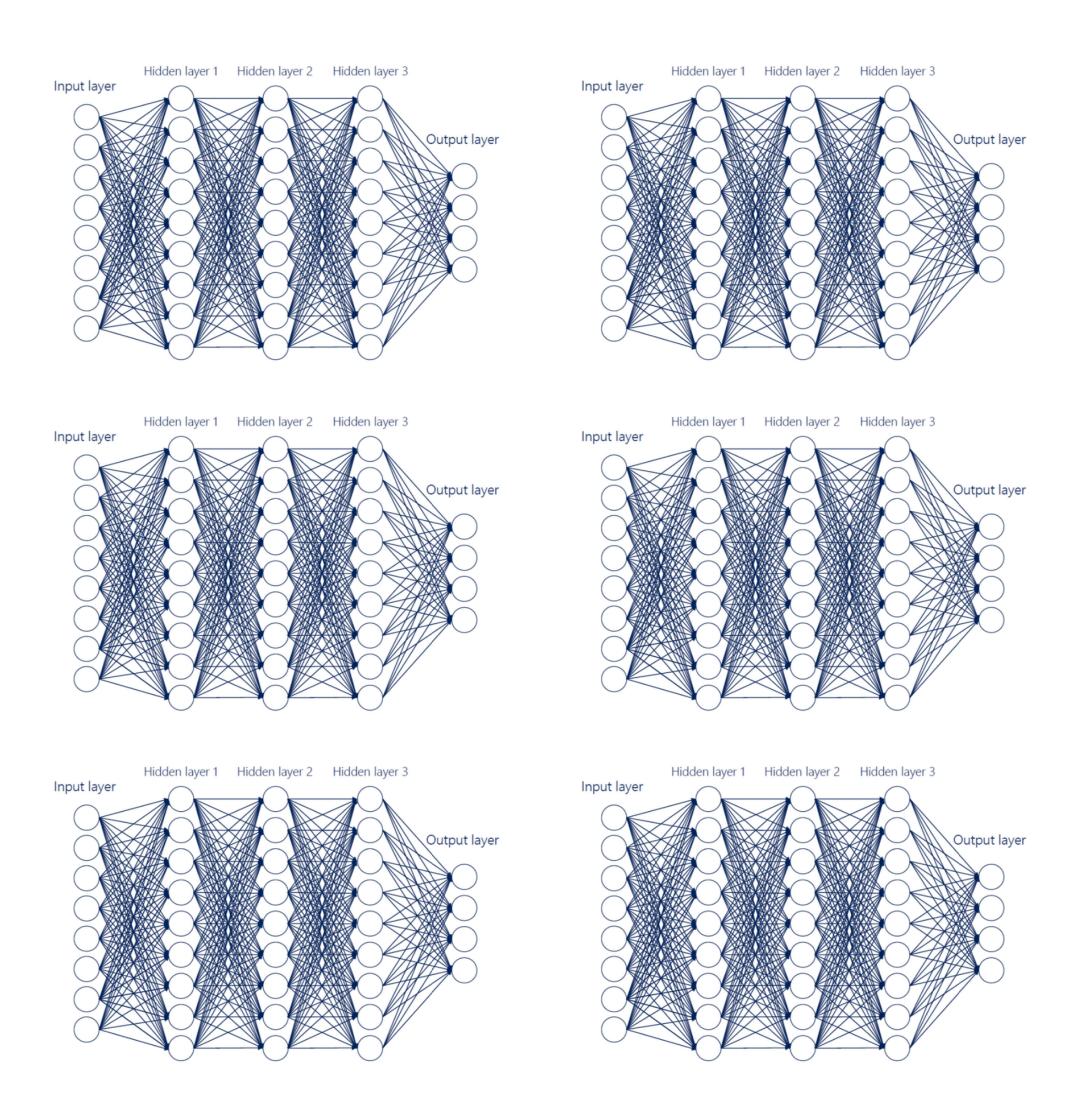
- For each value of real mu compute estimate
 ~100 time with a different draw of NP
- 2) With mean and std of the estimates:
 - 1) Apply a **Bias Correction** to the mean
 - And use std as error bar estimate for a given estimate of mu



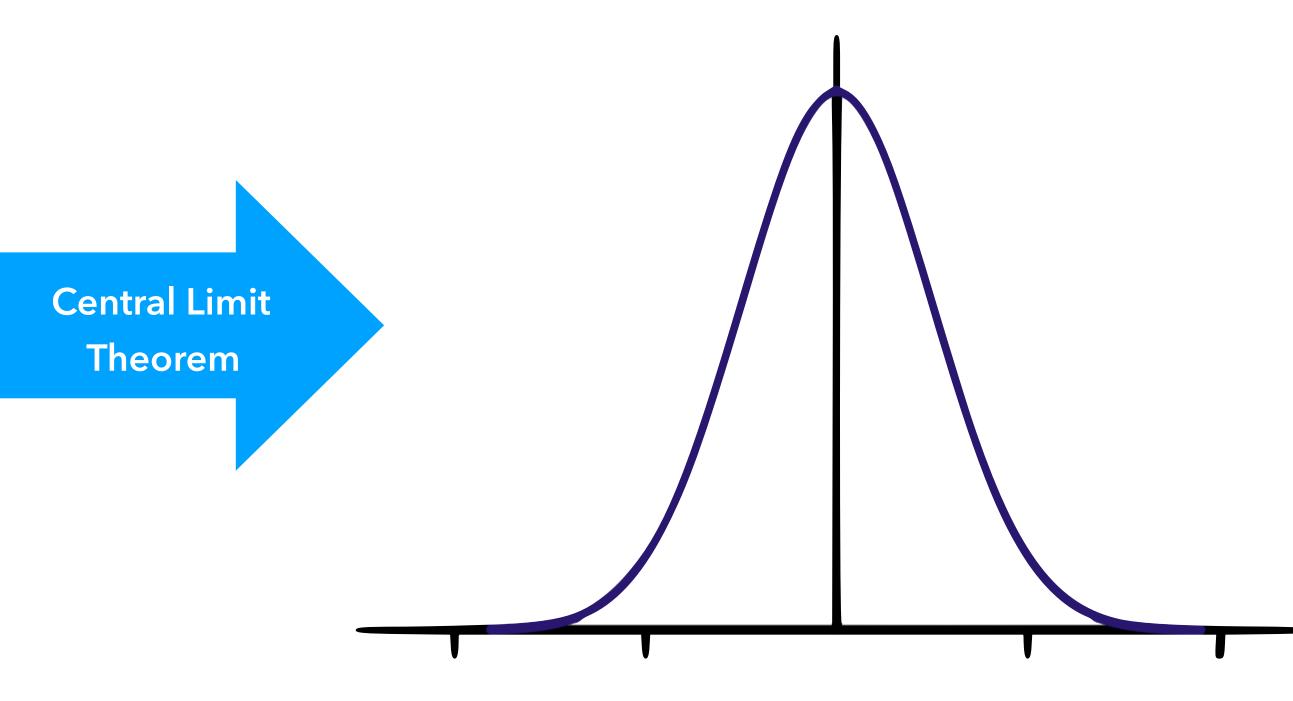
Uncertainty Quantifying From Scaling Laws Empirical Results comparing theoretical results with empirical reality

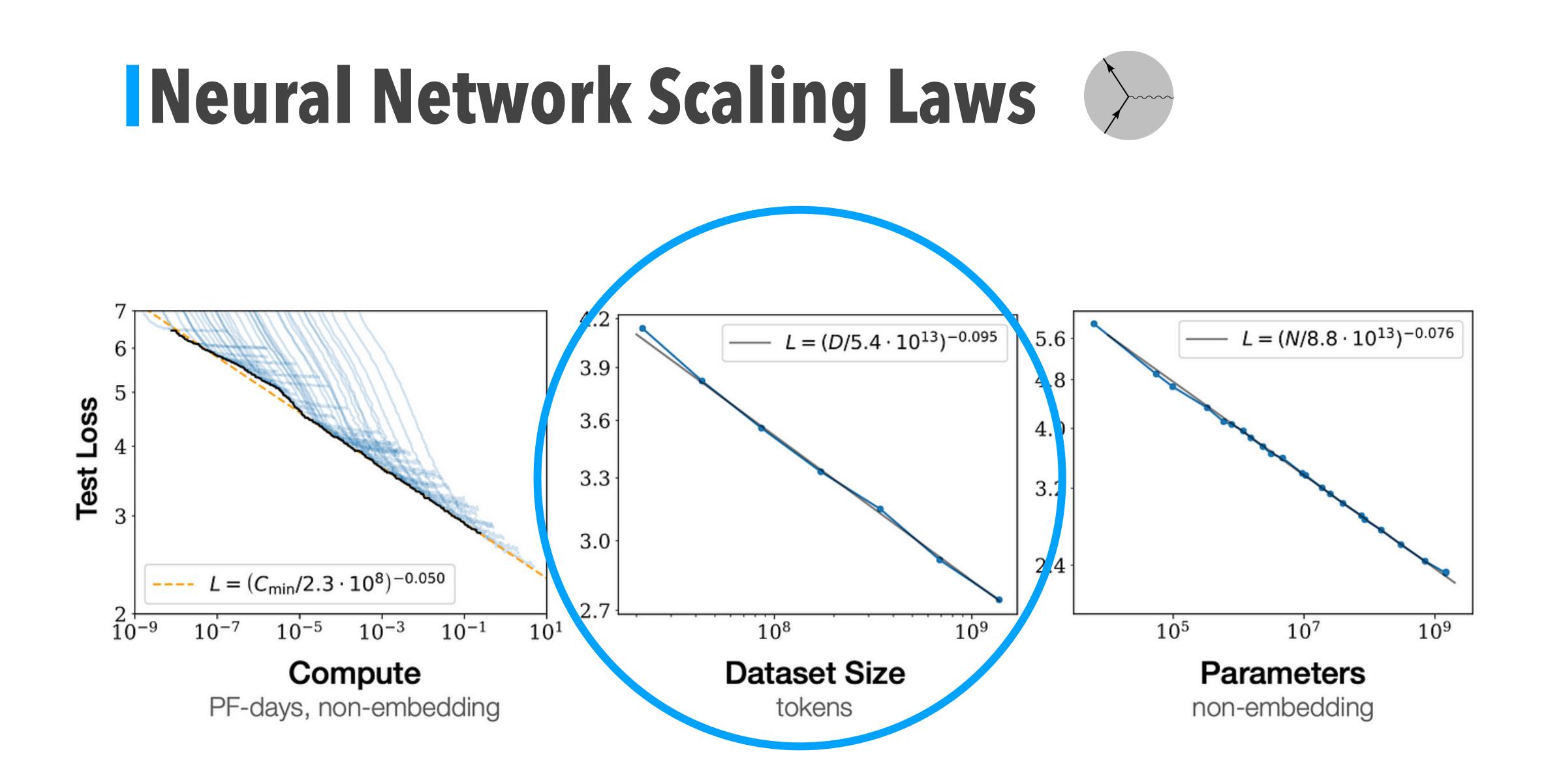


Uncertainty Quantification: Ensemble Uncertainty



Our Goal: Compute the Variance of an Ensembles Prediction without training an ensemble





Neural Network Scaling Laws

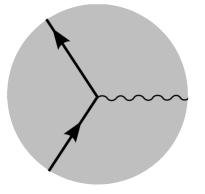
Question: How does Ensemble Variance scale with Training Dataset Size? Can we predict this scaling with physics-inspired theory?

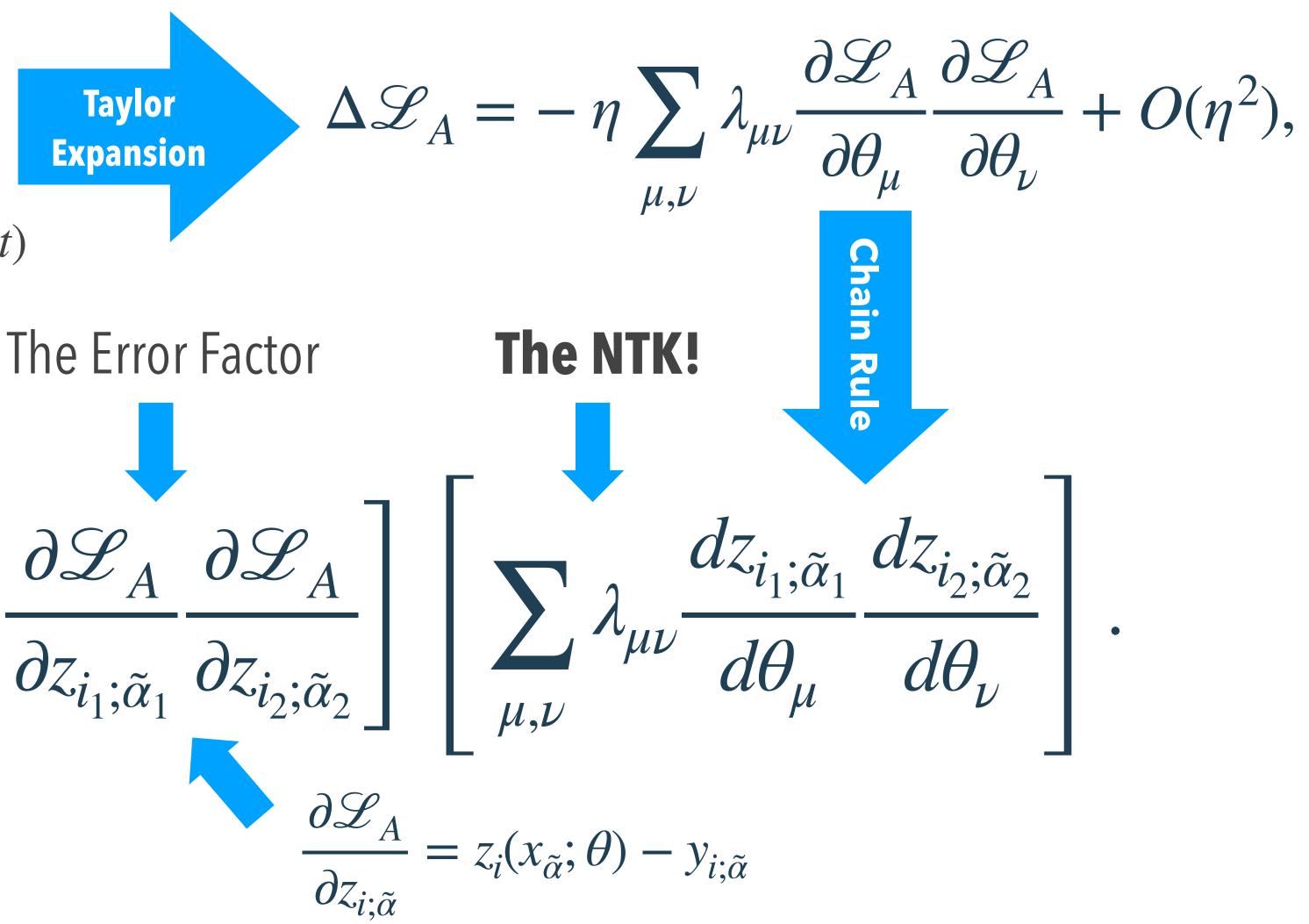
Physics-Inspired Theory: The NTK

NTK = Neural Tangent Kernel

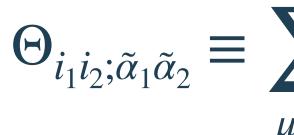
$$\theta_{\mu}(t+1) = \theta_{\mu}(t) - \eta \left. \frac{\partial \mathscr{L}_{A}}{\partial \theta_{\mu}} \right|_{\theta_{\mu} = \theta_{\mu}(t)}$$

$$\Delta \mathscr{L}_{A} = -\eta \sum_{i_{1}, i_{2}=1}^{n^{(L)}} \sum_{\tilde{\alpha}_{1}, \tilde{\alpha}_{2} \in \mathscr{A}} \left[\frac{\partial \mathscr{L}_{A}}{\partial z_{i_{1}}} \right]$$





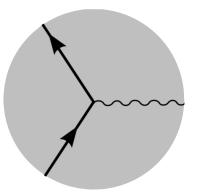
Physics-Inspired Theory: The NTK



The NTK is the **main driver** of the function-approximation dynamics.*

Thus, by understanding the NTK and how it evolves we can directly understand the behavior of NNs

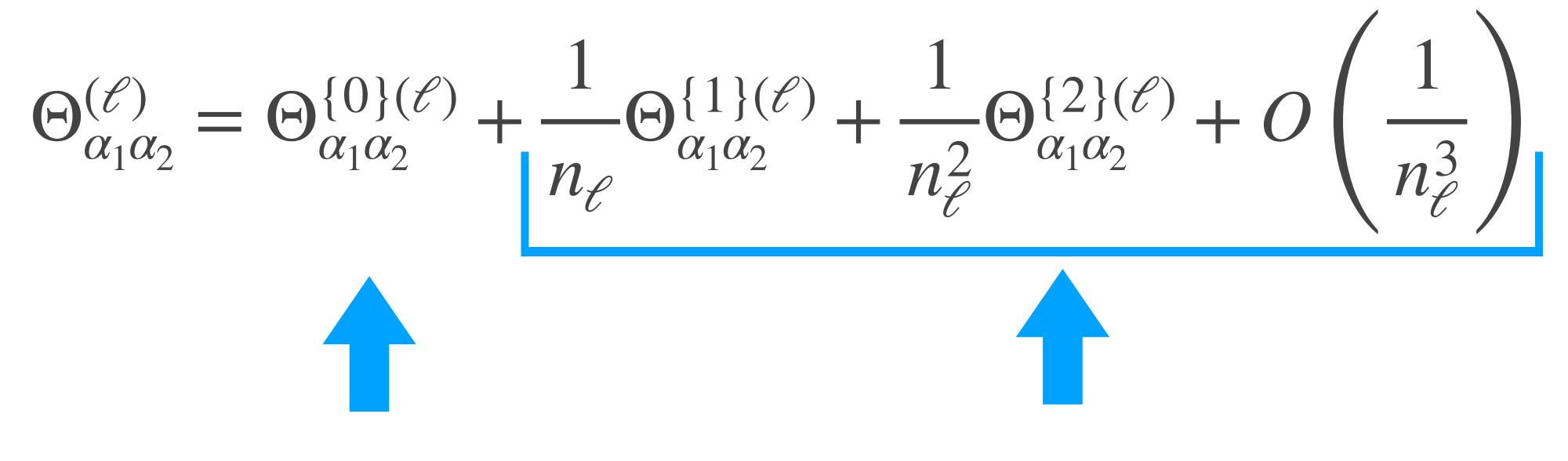
* for DNNs trained with full batch gradient descent



 $\Theta_{i_1 i_2; \tilde{\alpha}_1 \tilde{\alpha}_2} \equiv \sum_{\mu, \nu} \lambda_{\mu\nu} \frac{dz_{i_1; \tilde{\alpha}_1}}{d\theta_{\mu}} \frac{dz_{i_2; \tilde{\alpha}_2}}{d\theta_{\nu}}$

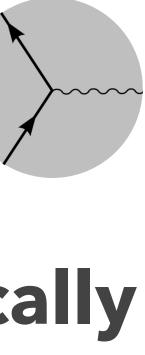
Physics-Inspired Theory: The NTK Perturbation

NTK dynamics are possible to understand perturbatively and analytically



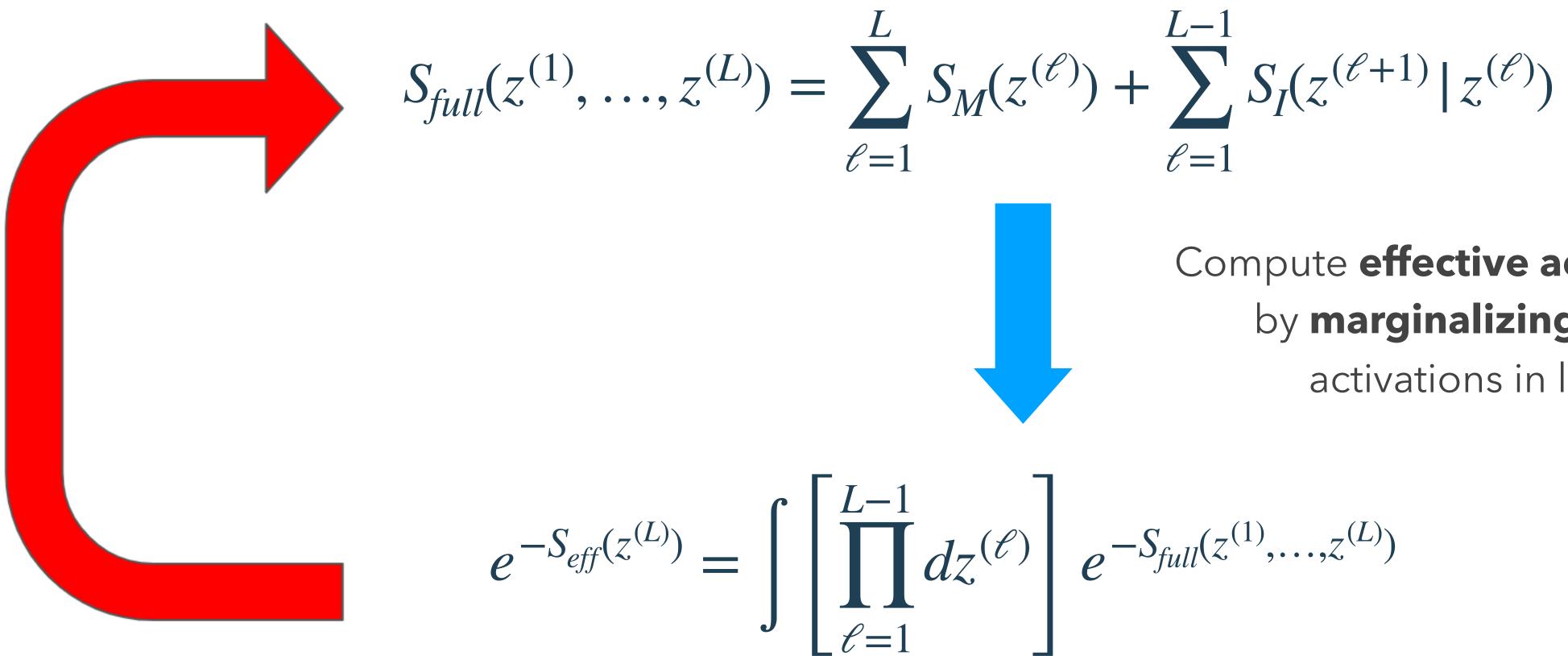
Infinte Width

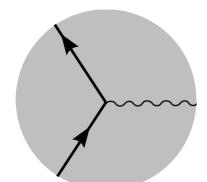
Perturbing in the width of the network



Physics-Inspired Theory: RG-Flow of the NTK **How to compute the infinite width NTK?** –> RG Flow

Recursively Repeat through each layer until **final layer** action is computed! This is **RG Flow in an DNN**.





Compute effective action of a layer ℓ by marginalizing over all preactivations in layer $\ell - 1$

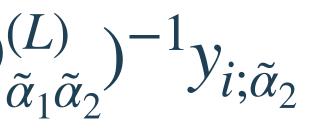
With the Final Layer NTK, we can compute the "end of training" prediction:

$$m_{i;\beta}^{\infty} \equiv \mathbb{E}\left[z_{i;\beta}^{(L)}(T)\right] = \sum_{\tilde{\alpha}_{1},\tilde{\alpha}_{2} \in \mathscr{A}} \Theta_{\beta\tilde{\alpha}_{1}}^{(L)}(\Theta_{\tilde{\alpha}}^{(L)})$$

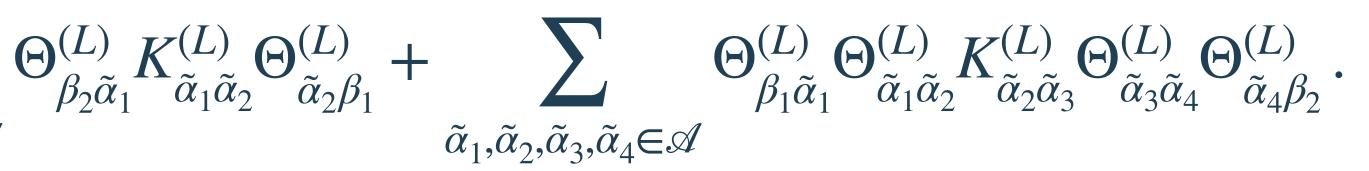
And the variance on that prediction:

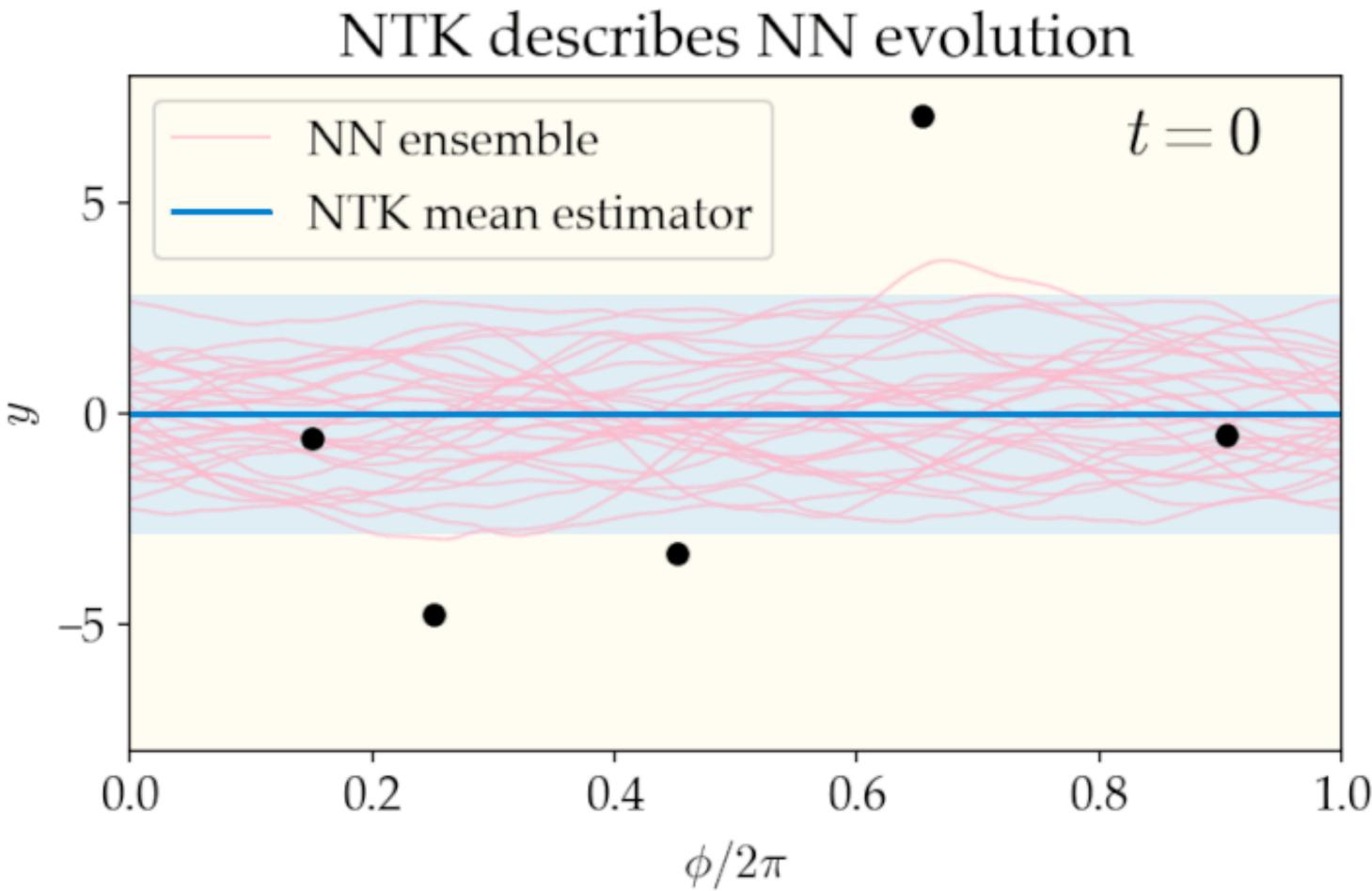
$$Cov\left[z_{i_1;\beta_1}^{(L)}(T), z_{i_2;\beta_2}^{(L)}(T)\right] = \mathbb{E}\left[z_{i_1;\beta_1}^{(L)}(T) z_{i_2;\beta_2}^{(L)}(T)\right]$$

$$= \delta_{i_1 i_2} K^{(L)}_{\beta_1 \beta_2} - \sum_{\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathscr{A}} \Theta^{(L)}_{\beta_1 \tilde{\alpha}_1} K^{(L)}_{\tilde{\alpha}_1 \tilde{\alpha}_2} \Theta^{(L)}_{\tilde{\alpha}_2 \beta_2} - \sum_{\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathscr{A}} \sum_{\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathscr{A}} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_1} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_2} \Theta^{(L)}_{\tilde{\alpha}_1 \tilde{\alpha}_2} + \sum_{\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathscr{A}} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_1} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_2} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_2} + \sum_{\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathscr{A}} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_2} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_2} + \sum_{\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathscr{A}} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_1} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_2} + \sum_{\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathscr{A}} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_2} + \sum_{\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathscr{A}} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_1} + \sum_{\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathscr{A}} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_2} + \sum_{\tilde{\alpha}_1, \tilde{\alpha}_2 \in \mathscr{A}} \nabla^{(L)}_{\beta_1 \tilde{\alpha}_2}$$



 $-m_{i_1;\beta_1}^{\infty}m_{i_2;\beta_2}^{\infty}$





Physics-Inspired Theory: Infinite Width Predictions

Empirical Results

Empirical Results Comparing Theoretical Results with Empirical Reality

Empirical Results: Infinite Width Predictions

Are infinite width calculations predictive on real Machine Learning problems?

We test this by computing:

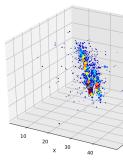
- Infinte Width Prediection
- A Trained Ensemble of DNNs (~150 networks)
 - Width-30, Early Stopping, Full Batch Gradient Decent

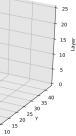
For a range of training set sizes

On three datasets:

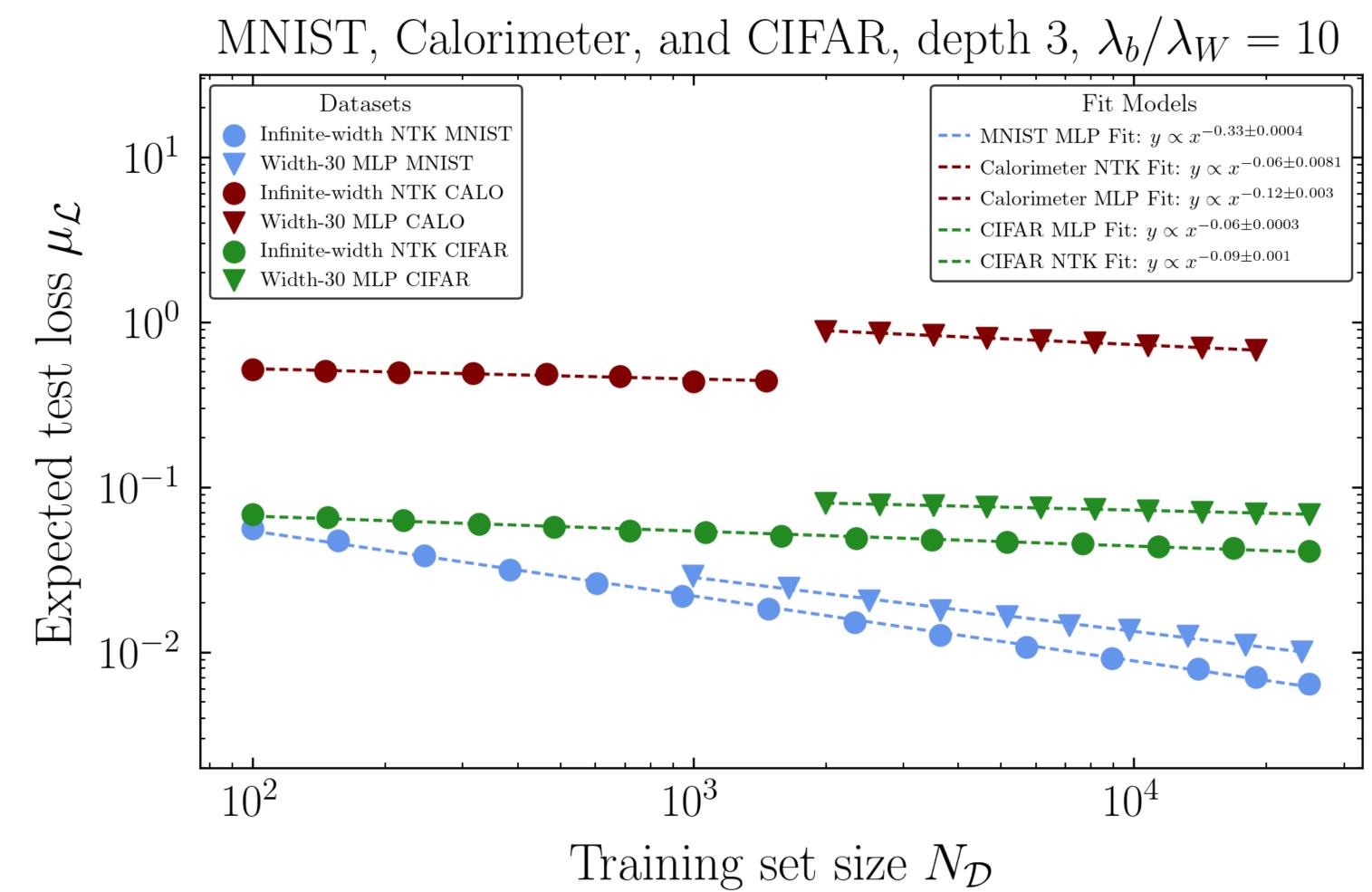
- MNIST Image Classification 1)
- **CIFAR Image Classification**
- A HEP Calorimeter Energy 3) **Regression Problem**

2: bird





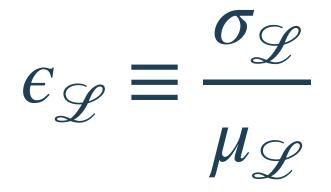
Empirical Results: Infinite Width Prediction Loss



The mean test loss for a trained ensemble of DNNs and Infinite Width Networks for three datasets

Empirical Results: Infinite Width Coefficient of Variation

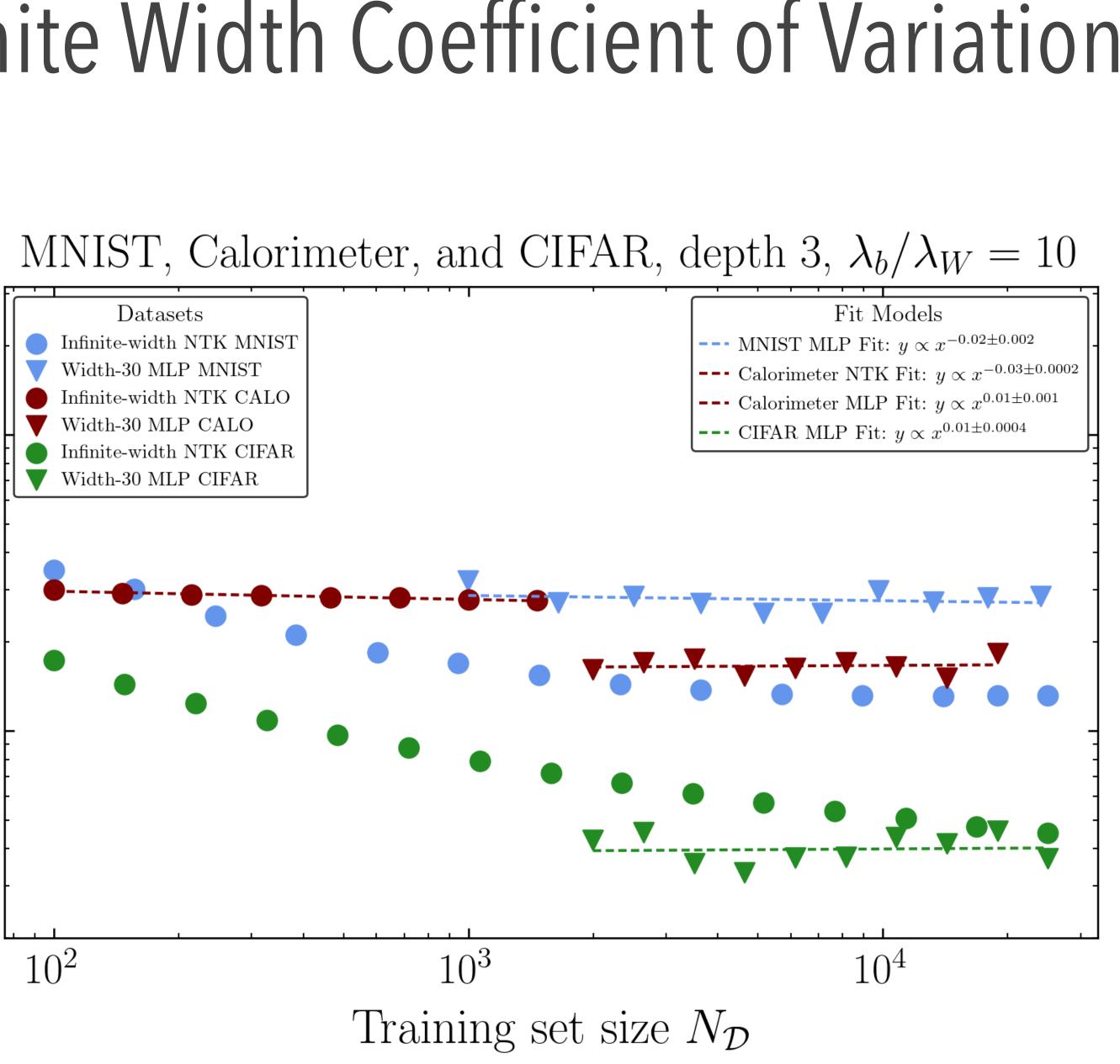
Suppose we introduce the **Coefficient of Variation:**



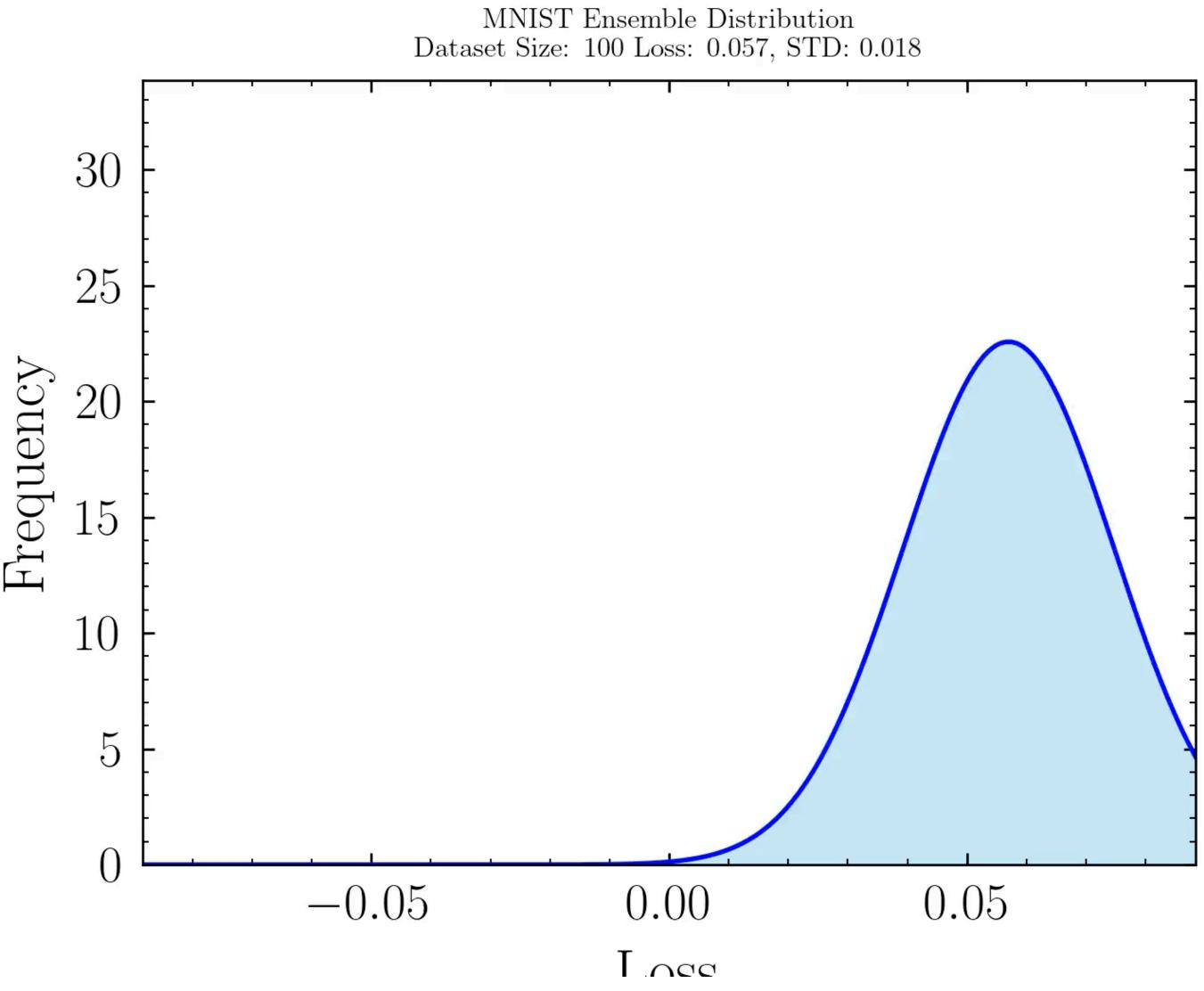
We find:

- 1) DNN $\epsilon_{\mathscr{L}}$ flat with dataset size!
- 2) Infinite width $\epsilon_{\mathscr{L}}$ asymptotes flat.

Relative Variance $\epsilon_{\mathcal{L}}$ 10^{-1}



Empirical Results: Infinite Width Prediction Loss

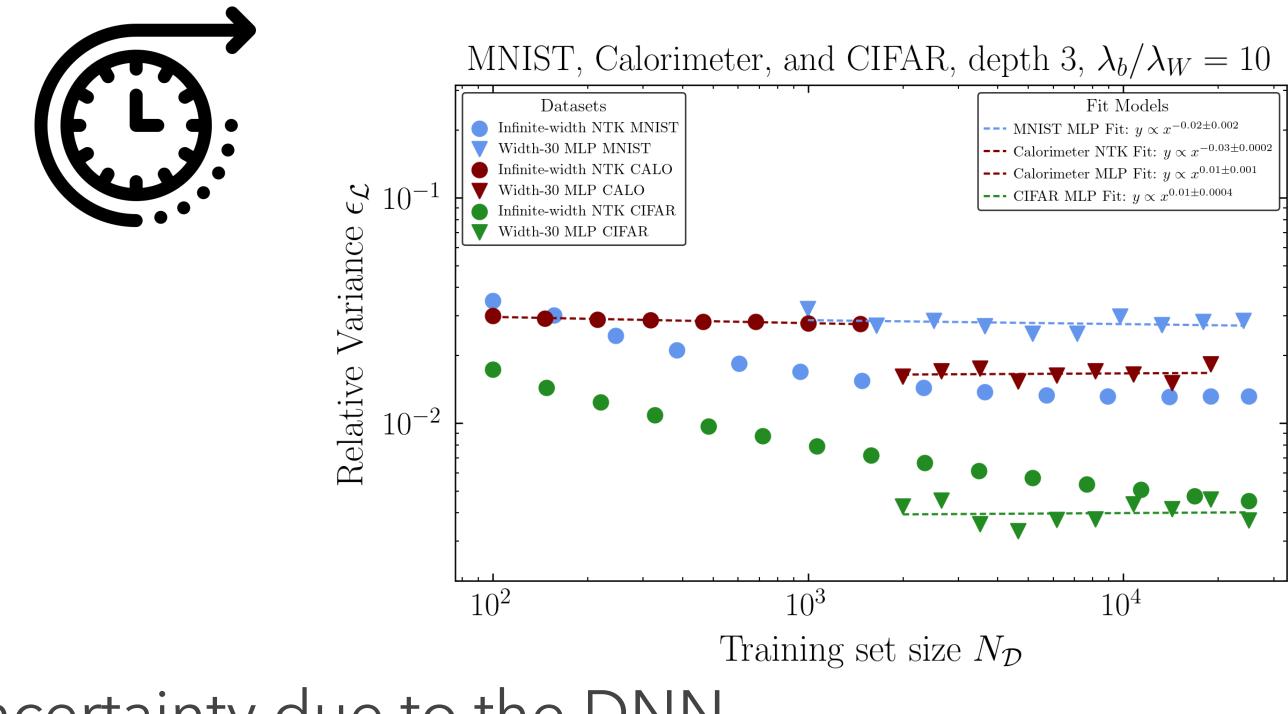


Conclusion: Implications

Implications of our work:

- 1. We find that $\epsilon_{\mathscr{L}}$ is small ($\mu_{\mathscr{L}} > \sigma_{\mathscr{L}}$)
 - We can assign $\mu_{\mathscr{L}}$ as the systematic uncertainty due to the DNN

- Compute Infinite Width Value after N_{\odot} asymptotes (very cheap)



2. $\epsilon_{\mathscr{L}}$ is flat and similar to the infinite width value, thus one can estimate $\epsilon_{\mathscr{P}}$ by either: • Training an ensemble for small $N_{\mathcal{P}}$ (cheap) and extrapolate $\epsilon_{\mathcal{L}}$ value to larger $N_{\mathcal{P}}$

