HiggsML Uncertainty Challenge 2nd Place Solution

Yota Hashizume Graduate School of Informatics, Kyoto University

- $x \in \mathbb{R}^n$: Event features (e.g., `PRI_had_pt`, `DER_pt_tot`).
- $y \in \{0,1\}$: Event label (1 = signal, 0 = background).
- $\nu \in \mathbb{R}^6$: Nuisance parameters
- $\{(x_{ij}, y_{ij})\}_{j=1}^{M_i} \sim P(v_i, \mu_i)$: Samples under nuisance parameters v_i and μ_i .

Overview

- 2-stage, GBDT-based model
- GPU-free

First stage

- Aggregated features
- Used 2 models (1,2)

Second stage

 Estimate 68% confidence interval by using aggregated features

Used 2 models (③,④) and merged their outputs

First stage

①: Label estimator

- Predict event label under random nuisance parameters
- Statics of predicted labels
 - Mean, variance, kurtosis, skewness
 - $\frac{i}{256}$ quantile for i = 0, ..., 256(important to describe shape of the distribution)

2 : TES & JES estimator

- TauEnergyScale (TES), JetEnergyScale (JES)
 - The factors applies to some features
- Statics of raw features $\{x_{ij}\}_{i=1}^{M_i}$
 - Mean, variance, kurtosis, skewness
- Predict TES and JES from statistics of features

- 3 : Binned regression classifier
 - Divide μ 's range into 5 bins and predict its bin
 - Treat the output as a distribution, then find the smallest interval that covers 68% of it.

④ : Quantile regressor

- Pinball loss function enables us to predict confidence interval directly
- You can use it easily by using LightGBM

Observation:

Binned regression classifier (③) can make better interval when its confidence is high.

- Try a DNN approach
 - Deep sets, Set transformer, ...
- Use bigger dataset
 - I used small dataset in this solution, but there is bigger (x1000~) dataset.
 - There will be computational cost issues, so need to make some adjustments.

Thanks to the host and the audience!