
Learned Proximal Network [1]

A learned proximal network (LPN) replaces the traditional proximal operator with a neural 
network trained to fit the complex data distribution. Similar to a diffusion model, this 
method imposes rich priors on the solution and enables higher-quality reconstructions in 
inverse problems.
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• Generative models for inverse problems improve reconstruction quality and reduce required measurements but may hallucinate when the target image lies 
outside their training distribution.

• Existing uncertainty quantification methods often rely on unavailable in-distribution calibration data, use heuristic rather than statistical estimates, or only 
address uncertainties from model complexity or limited data—ignoring uncertainty from distribution shifts.

• We highlight the need for instance-level uncertainty quantification in the presence of distribution shift and propose a strategy to provide it.
• Our hypothesis is that, with different limited sets of random measurements, reconstruction will be more stable for in distribution targets. 

Therefore, we propose reconstruction variation across different random measurements as a way to quantify distribution shift uncertainty.

Abstract

Background Results

Computed Tomography

CT uses a rotating, narrow X-ray beam and computer processing to create detailed cross-
sectional “slice” images of the body, offering more information than standard X-rays. The 
amount of information in a CT scan depends on the detector resolution and the number of 
angles used. Higher resolution captures finer spatial details in each projection, and more 
angles provide a wider variety of views of the object. When the total number of 
measurements (detector resolution × number of angles) is less than the number of 
unknowns (image height × width), the reconstruction problem is underdetermined, and we 
rely on information encoded in the prior.
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Randomness
Existing methods for quantifying reconstruction uncertainty without calibration data often 
leverage randomness over models, by training multiple copies of a learned prior with 
different random seeds and then treating these as an ensemble. However, this process (1) is 
computationally expensive due to retraining, and (2) accounts for uncertainty due to limited 
training data and overparameterization but doesn't directly quantify distribution shift 
uncertainty. Instead, we propose to quantify instance-level reconstruction uncertainty by 
measuring sensitivity to the random measurements used at inference time, to detect 
distribution shift relative to a learned prior, without retraining.

Experimental Setup

Mean & Standard Deviation Comparison
• Mean

Mean reconstructions over 10 different seeds are shown for one sample of each digit. As 
the number of angles increases, the quality of the reconstructed images also improves. 
However, the reconstruction quality of the in-distribution data is comparably better than 
the out-of-distribution data, especially when the number of measurement angles is smallest 
and thus the learned prior plays a larger role.

• Standard Deviation

If the target image is in the distribution learned by the prior network, we expect it to 
produce consistent predictions even as the set of random measurement angles changes. In 
contrast, if the target image is out of distribution for the prior, we expect higher variance of 
the reconstructions when the random measurement angles change. This is exactly what we 
find: reconstruction variance over random measurements detects distribution shift. The 
effect is most prominent when the number of measurement angles is small, which aligns 
with the setting when the learned prior has the most influence on the reconstruction and 
thus distribution shift poses the greatest risk.

CT Reconstruction Results

In our CT reconstruction experiments, we maintain a fixed detector resolution of 22 pixels 
and vary the number of measurement angles. We repeat the procedure across 10 samples 
of each digit, and 10 random seeds to choose the random measurement angles for each CT 
scan. We average the reconstruction PSNRs across the 10 sample images of each digit, and 
plot the mean and range (min-max) of the resulting average PSNRs across the 10 random 
seeds for each digit. The results indicate that the learned prior is beneficial even for out of 
distribution digits, but much more effective for in-distribution digits, and especially so when 
the number of measurement angles is reduced.

Conclusion
Generative models have shown great promise as data-driven priors in solving inverse 
problems like CT reconstruction, enhancing image quality and reducing measurements. 
However, data-driven priors pose risks of hallucination under distribution shift, when the 
target image differs from the distribution used to train the prior. Here we validate the 
simple hypothesis that this distribution shift fragility can be detected without extensive 
computational or data-collection burden, by evaluating how consistent the reconstruction is 
across random subsets of the available measurements. Though preliminary, our work 
suggests a simple strategy to detect and mitigate distribution shift by collecting additional 
measurements until reconstruction stability crosses a desired threshold.
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The LPN learns an input-convex 
function 𝜓𝜓 whose gradient 𝑅𝑅 is 
guaranteed to be the proximal 
operator for some regularizer 𝑅𝑅.

Experiment Setting

For the MNIST Dataset, we use label 0 as our in-distribution data and labels 1-9 as our out-
of-distribution data. We trained the LPN with only 0 and evaluated with all labels to see if 
the LPN distinguishes if the digit is out of distribution.

For the learned proximal operator 𝑅𝑅𝜃𝜃, we can recover the corresponding learned prior using 
this equation from [2], where 𝑥𝑥 is the image and 𝜓𝜓𝜃𝜃 is the function learned by the prox 
network, with the prox operator 𝑅𝑅𝜃𝜃 as its gradient. The plot shows mean and +/- standard 
deviation of the resulting priors over 100 images per label. We see that the trained prior 
does recognize the digit 0 as in distribution by giving it the lowest regularization score on 
average, while the more visually different digits usually receive higher regularization scores 
under the learned prior.

In Distribution Out of Distribution
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