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Abstract

Large language models (LLMs) have exhibited impressive reasoning capabilities
and proficiency in answering complex questions. However, they are prone to
generating inaccurate or fabricated responses, a phenomenon commonly referred
to as hallucination. This issue is particularly critical in high-stakes fields such as
molecular chemistry, where errors can have significant consequences. It is essential
to implement robust uncertainty quantification methods that enable us to evaluate
the reliability of outputs generated by large language models. In this work, we
present a novel Question Rephrasing technique to assess the input uncertainty of
LLMs, which refers to the uncertainty arising from equivalent variations of the
inputs provided to LLMs. This technique is integrated with sampling methods that
measure the output uncertainty of LLMs, thereby offering a more comprehensive
uncertainty assessment. We validated our approach to property prediction and
reaction prediction for molecular chemistry tasks.

1 Introduction

In recent years, Large Language Models (LLMs), such as GPT (Achiam et al., 2023), Claude An-
thropic (2024), and Llama Touvron et al. (2023), have demonstrated remarkable success in various
tasks. Pre-trained on vast amounts of data and boosted with billions of parameters, these LLMs
demonstrated impressive capabilities across a range of scientific domains, including chemistry Guo
et al. (2023a), biology Agathokleous et al. (2023), and physics Nguyen et al. (2023). Despite their
successes, a critical aspect that remains under-explored is the uncertainty inherent in the predictions
produced by these LLMs. Understanding and quantifying uncertainty in LLM outputs is crucial for
several reasons. It aids in informed decision-making, enhances user trust, and ensures the safety and
reliability of AI systems (Sun et al., 2024). Moreover, transparency about model uncertainty fosters
responsible AI deployment.

Inspired by the practice in psychological assessments, where clinicians ask the same question in
different ways to test a patient’s understanding and consistency of responses, we propose a technique,
termed Question Rephrasing, to quantify the uncertainty of the answer produced by an LLM in
response to a question. Essentially, given an initial question, the Question Rephrasing technique
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involves rephrasing the question while maximally preserving its original meaning and then submitting
the rephrased question to the LLM. The consistency between the LLM’s answers before and after
rephrasing is evaluated to quantify the uncertainty of the LLM with respect to the input variations. In
addition, a sampling approach is adopted that repeatedly queries the LLM with the same input to
assess the output uncertainty of the LLM.

In our experiments, we applied our method to quantify the uncertainty of GPT-3.5/4 (Achiam et al.,
2023) on two tasks in the Chemistry domain: property prediction and forward reaction prediction
analogous to classification and text generation tasks, respectively. We found that GPT-4 was sensitive
to Question Rephrasing, and the output uncertainty could serve as a valuable indicator for the accuracy
and reliability of the LLM’s response.

2 Background and Related Work

2.1 Textual representation of molecules

The textual representation of molecular structures is fundamental for applying language models to
chemistry-related tasks. Prominent among these representations are the Simplified Molecular Input
Line Entry System (SMILES) (Weininger, 1988; O’Boyle, 2012) and the International Union of
Pure and Applied Chemistry (IUPAC) (Panico et al., 1993; Leigh, 2011) nomenclature. Currently,
no standardized rules are in place for assigning common names to chemical compounds. IUPAC
provides a universally recognized method for naming chemical entities, whereas SMILES offers a
more compact, machine-readable format that has recently facilitated significant advancements in
applying language models to chemistry (Xu et al., 2017; Ross et al., 2022; Wu et al., 2023; Fang
et al., 2024). Given its ease of use and compatibility with various machine learning workflows, we
used the SMILES notation as the primary method for representing molecular structures.

2.2 Chemistry tasks and LLMs

Recent literature highlights the expanding role of LLMs in molecular chemistry, particularly in
enhancing predictive and generative tasks. Guo et al. (2023b) established benchmarks for evaluating
LLMs in property and reaction outcome predictions, demonstrating their broad applicability. Zhong
et al. (2024a) showed that while LLMs lag behind specialized machine learning models in processing
geometric molecular data, they significantly enhance performance when integrated with these models.
Zhong et al. (2024b) shows that LLMs as post-hoc correctors improves the accuracy of molecular
property predictions after initial model training. Qian et al. (2023) and Jablonka et al. (2024)
underscore the utility of LLMs in generating explanatory content for molecular structures and
resolving complex chemical queries, enhancing both educational and practical applications. Luong
& Singh (2024) found that transformer-based models like GPT and BERT exhibit high accuracy in
reaction prediction and molecule generation.

2.3 Uncertainty quantification for black-box LLMs

The recent shift towards black-box LLMs, particularly in commercially deployed models such as
GPT4 (Achiam et al., 2023), Claude 3 (Anthropic, 2023) and Gemini (Team et al., 2023), presents
unique challenges for Uncertainty Quantification (UQ). Traditionally, UQ techniques have relied
heavily on accessing the internal model parameters and predictions at a granular level, such as
token probabilities and logits (Gal & Ghahramani, 2016; Malinin & Gales, 2018; Hu et al., 2023).
However, the encapsulation of modern LLMs, often provided as API services, restricts such access.
Recent studies Kuhn et al. (2023); Lin et al. (2023); Xiong et al. (2024) have started to address these
limitations by innovating methods and pipelines that infer uncertainty directly from the text outputs
generated by LLMs without requiring their internal workings. Kuhn et al.(2023) introduce semantic
entropy, a novel metric to quantify uncertainty in LLMs that focuses on semantic equivalence, the
concept that different phrases can express the same meaning. Later works (Lin et al., 2023; Xiong
et al., 2024) introduce complex frameworks to refine black-box UQ methods comprising prompting
strategies, sampling methods, and aggregation techniques. This work aims to quantify the black-box
LLMs uncertainty on chemistry-related tasks.
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3 Uncertainty Quantification in Molecular Chemistry Tasks

This section introduces and discusses UQ methods for chemistry-related tasks using black-box
LLMs. We categorized our UQ metrics into two parts: input uncertainty and output uncertainty.
Input uncertainty uses the Question Rephrasing strategy to assess LLM’s sensitivity to variations in
molecular representations. We systematically use the alternative SMILES representations of each
input molecule in the prompt and investigate how these perturbations impact the LLM’s output
predictions. Since the alternative SMILES of the same molecule are used, we were able to guarantee
that the semantics of the modified prompt remain the same. In addition, this method can test whether
an LLM truly understands molecular representations in chemistry or is only able to perform string
comparisons. Output uncertainty assesses the consistency of the output produced by an LLM, which
is influenced purely by the model’s inherent properties. We repeatedly query the model with identical
input to create a distribution of the answers. We structured our pipelines based on existing UQ-related
works (Prabhakaran et al., 2019; Lin et al., 2023; Kuhn et al., 2023). Below, we outline our UQ
methods:

1. For a chemistry-related task t, given a SMILES representation xi of the i-th molecule,
generate a prompt Pt,xi based on a task-specific template (see Section 3.1).

2. Generate a list of up to n SMILES variants of the molecule xi: L = {x1
i , x

2
i , ..., x

n
i }. We

ask GPT-4 to rank the SMILES variants by its confidence to interpret their structures and
choose the one, say x̂i, with the highest confidence to construct a prompt Pt,x̂i

by replacing
xi in Pt,xi

with x̂i (see Section 3.2).

3. Ask the LLM to generate m responses for the prompt Pt,x̂i
and obtain Rt,x̂i

=
{rt,x̂i,1, rt,x̂i,2, ..., rt,x̂i,m}.

4. Calculate the entropy-based uncertainty metrics Ut,xi
and Ut,x̂i

for Rt,xi
and Rt,x̂i

, respec-
tively.

5. Measure the input uncertainty by comparing Ut,xi and Ut,x̂i for all chosen xi. Measure the
output uncertainty by examining Ut,xi

and Ut,x̂i
separately.

In the subsequent subsections, we provide detailed explanations of our UQ methods.

3.1 Prompt design for molecular chemistry tasks

It was shown that LLMs exhibited a certain degree of zero-shot learning capabilities (Brown et al.,
2020). Here, we adopted and modified the structured approach delineated in the recent Chemistry
LLM benchmark study Guo et al. (2023b) to design chemistry task-specific prompt completion pairs
using In-Context Learning (ICL) samples. Motivated by the OpenAI prompt guide (Shieh, 2023)
and the benchmark paper Guo et al. (2023b), we designed our prompts to consist of three parts:
1. Chemistry role-playing prompts with task-specific instructions. 2. Few shot ICL samples were
constructed using k-scaffold sampling. 3. Questions to be answered for the target SMILES. Table 1
showcases the prompt design for the toxicity prediction task.

Table 1: An example of prompts for chemistry-related tasks.

Role: You are an expert Chemist specializing in Chemical Property Prediction.
Task: Given the SMILES representation of a molecule, use your expertise to predict the molecular
properties based on its structure...
ICL samples: For the following SMILES, determine if each molecule contains a toxicity compound,
answering only with "Yes" or "No". A few examples are provided:
SMILES: Few-shot example 1
Contain toxicity compound: Yes
...
SMILES: Few-shot example p
Contain toxicity compound: No
Question: SMILES: target smiles
Contain toxicity compound: [Provide an answer based on analysis]
Please strictly answer with "Yes" or "No".
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Figure 1: SMILES representation variants of Aspirin. While all structures depict the same molecule,
their SMILES representations are different, which introduces input variations. Top left: Canonical
SMILES representation of Aspirin. Rest: Five SMILES variations of Aspirin.
3.2 Input Uncertainty: Sensitivity Analysis

We investigated input uncertainty by analyzing the sensitivity of a black-box LLM to changes in
inputs. For each ICL prompt Pt,xi of a chemistry task t, we rephrased it by replacing the SMILES
representation xi with its equivalent SMILES to generate a new prompt. Specifically, we first obtained
the structure of the molecule si of xi using RDKit (Landrum et al., 2013, 2020). Then, we obtained a
list of up to n distinct SMILES representations L = {x1

i , x
2
i , ..., x

n
i } for the structure si. For better

illustration, we use Aspirin as an example to showcase this step (see Figure 1). We then prompted
GPT-4 to rank the obtained SMILES variants by its confidence in interpreting the structures from
those SMILES variants (see Table 2). The SMILES variant x̂ with the highest confidence score was
chosen to construct a new prompt Pt,x̂i

by replacing xi in Pt,xi
with x̂i. The LLM was then asked

to generate responses for the prompts Pt,x and Pt,x̂ separately. We then evaluated the responses
produced by LLM for Pt,x and Pt,x̂. Accuracy was the metric used in the molecule classification
tasks, and exact match accuracy was the metric used in the tasks that generate SMILES.

Table 2: Prompt template for generating SMILE confidence score

Role: As an expert in chemistry with a thorough understanding of
SMILES notation.
Questions: Can you rank your confidence score in the following smiles
for interpreting its structures? [please output the exact smile string]:
variation SMILES 1
variation SMILES 2
...
variation SMILES n

3.3 Output uncertainty: Uncertainty Quantification from Structure Similarly

In this section, we explain the entropy-based metrics for measuring the output uncertainty of black-
box LLMs, focusing on classification and generation tasks in the chemistry domain.
For classification tasks, the LLM’s responses Rt,xi = {rt,xi,1, rt,xi,2, ..., rt,xi,m} of the molecule
xi can be interpreted as a set of classification results, where each response rt,xi,j is a class label
predicted by LLMs from a set of possible classes C = {c1, c2, . . . , ck}. Here, k is the number of
classes that appear in the prediction outputs. The probability of each class cj ∈ C can be calculated
as the percentage of cj appearing in Rt,xi

:

P (cj) =
|{rt,xi = cj : rt,xi ∈ Rt,xi}|

|Rt,xi
|

(1)

where |{rt,xi
= cj : rt,xi

∈ Rt,xi
}| counts the number of times that class cj appears in Rt,xi

. The
uncertainty score Ut,xi

is formulated as:
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Ut,xi
= −

k∑
j=1

P (cj) logP (cj) (2)

For all generation tasks that produce the SMILES representation, we measured the similarity between
the generated SMILES using the Tanimoto Similarity (Butina, 1999; Chung et al., 2019) based on
their molecular fingerprints, which can be obtained with RDKit (Landrum et al., 2013). Sometimes
an LLM may generate invalid SMILES representations. We set the similarity between an invalid
SMILES and any other SMILES to be an infinitely small number ϵ. Once we obtain the pairwise
similarity between all SMILES generated for a specific molecule xi, we applied hierarchical clustering
to group the generated SMILES into g clusters S = {s1, s2, . . . , sg}. The probability of a cluster
sj ∈ S is calculated as its percentage in Rt,xi

:

P (sj) =
|{rt,xi ∈ Rt,xi : rt,xi = sj}|

m
(3)

Without loss of generality, the uncertainty score Ut,xi can be formulated as follows:

U(Rt,xi | S) = −
g∑

j=1

P (sj) logP (sj) (4)

4 Experiments

Following Kuhn et al. (2023); Lin et al. (2023), we evaluate our output uncertainty metric by
utilizing it to predict whether LLM can correctly generate an answer. We plot the Receiver operating
characteristic curve (ROC) and calculate the Area under the ROC Curve (AUC) score. An AUC score
of 0.5 indicates that the uncertainty metrics are no better than a random classifier, whereas a high
AUC score indicates that the metrics can help us determine whether to trust the model’s response.
We evaluated the input uncertainty by comparing the model performances across different inputs. A
significant increase or decrease in model performance may indicate that the model is sensitive to its
input and, thus, less likely to be trusted.

4.1 Property Prediction

We used five datasets (BBBP, HIV, BACE, Tox21, and ClinTox (Wu et al., 2018)) and the asso-
ciated tasks to investigate the capabilities of our method to quantify the uncertainty of Black-box
LLMs (specifically GPT-4) on predicting molecular properties. These datasets, sourced from the
corresponding established databases and scientific literature, are primarily used in training machine
learning models to predict binary molecular properties from their SMILES representations. For each
dataset, adapted from the experimental settings of (Guo et al., 2023b), we randomly sampled the 100
molecules as a test set and constructed the prompts using ICL samples querying from the rest of the
dataset. For each prompt, we repeatedly generated 5 responses and calculated the uncertainty score
from Equation (2), here, denoted as Class Entropy, and used to predict whether GPT-4 can generate
the correct answers. In addition, we reformulate the input SMILES and re-run the experiments
following the methods mentioned in Section 3.2.
The prediction and uncertainty quantification results are presented in Table 3 and Figure 2. We
noticed a slight decrease in model performance (except BP) when using reformed SMILES over
the original SMILES input in Table 3. This indicates GPT’s relatively high confidence among the
input invariants. In addition, according to Figure 2, the AUC score for the original SMILES spans
between 0.546 and 0.774, indicating a moderate trustworthiness in using the output uncertainty score
to predict the GPT’s response correctness.

4.2 Forward Reaction Prediction

We utilize the USPTO-MIT dataset (Schneider et al., 2016; Jin et al., 2017) to evaluate our uncertainty
quantification metrics. The test set is constructed by randomly sampling 100 reaction-product pairs,
while the remaining data are used to query the in-context learning (ICL) samples. For evaluations,
we employ GPT-4 and GPT-3.5 Turbo to generate responses. We repeatedly generate 3, 10, 15,
and 20 responses for each prompt. We first calculate the accuracy score by performing an exact
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Table 3: Property prediction results of GPT-4 using original input SMILES (Orig. SMILES) and
reformulated SMILES (Reform. SMILES) on five datasets. The evaluation metrics include Accuracy
and F1 score. The average Class Entropy (C. E) is also reported.

Model GPT−4 (Orig. SMILES) GPT−4 (Reform. SMILES)

Eval. metric Acc. F1 U.Q Acc. F1 U.Q

BACE 0.750 0.766 0.150 0.660 ↓ 0.638↓ 0.398
BBBP 0.690 0.756 0.290 0.700 ↑ 0.795 ↑ 0.415
ClinTox 0.820 0.357 0.319 0.833 ↓ 0.285 ↓ 0.427
HIV 0.910 0.471 0.060 0.763 ↓ 0.350 ↓ 0.292
Tox21 0.707 0.522 0.105 0.533 ↓ 0.416 ↓ 0.290

Figure 2: ROC curve for evaluating the in predicting the correctness of the GPT using our uncertainty
score.
match comparison between the generated SMILES and the ground-truth SMILES. We then calculate
the output uncertainty metric and use it to predict whether the response from black-box LLMs is
correct. We then derived the AUC score for each set of responses. In addition, we perform the input
uncertainty analysis by reformulating the input SMILES as we mentioned in Section 3.2 and repeat
the above steps.
We present our results in Table 4. We observe that GPT-3.5/4 performed poorly on reaction prediction
tasks. In addition, our output uncertainty metrics are reliable indicators of the correctness of
GPT’s responses (AUC score ranges from 0.86 to 0.99). We also observed a substantial decline in
model performance on reaction prediction tasks when presented with the variations in molecular
representation, demonstrating the LLMs’ weakness in understanding basic chemistry knowledge.
Table 4: Reaction prediction performances of GPTs and AUC scores of output uncertainty metrics

Method Top-1 Acc. AUC-3 AUC-10 AUC-15 AUC-20

GPT-4 + Orig. 0.250 0.864 0.919 0.915 0.927
GPT-4 + Reform 0.070 ↓ 0.972 0.941 0.958 0.993

GPT-3.5 + Orig 0.186 0.904 0.899 0.924 0.943
GPT-3.5 + Reform 0.036 ↓ 0.919 1.000 1.000 1.000

5 Conclusions

In this work, we introduce a novel Question Rephrasing technique for uncertainty quantification
in LLMs, specifically applied to chemistry tasks. By integrating input and output uncertainty
assessments, we enhanced the ability to comprehensively evaluate the reliability of LLMs. We
applied our approach to quantify the trustworthiness of LLMs in molecular chemistry. Experiment
results show that GPT-3.5/4 exhibits sensitivity to input variations, and entropy-based metrics can
effectively capture the output uncertainty of GPT-3.5/4, enabling the prediction of the correctness of
LLM responses. Our experimental results underscore the need to enhance LLMs’ understanding of
basic chemistry knowledge. We believe that our approach and the discovery in this study help pave
the way for developing more reliable and transparent AI systems for scientific applications.
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